欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    350MW火力发电厂电气部分设计.doc

    • 资源ID:1077012       资源大小:227.28KB        全文页数:32页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    350MW火力发电厂电气部分设计.doc

    1、火力发电厂电气部分设计说明书项目编号项目完成人摘 要:本次毕业设计的题目是火力发电厂电气部分设计.根据设计的要求,在设计的过程中,根据变电站的地理环境,容量和各回路数确定变电站电气主接线和站用电接线,并选择各变压器的型号;进行参数计算,画等值网络图,并计算各电压等级侧的短路电流,列出短路电流结果表;计算回路持续工作电流,选择各种高压电气设备,并根据相关技术条件和短路电流计算结果表校验各高压设备.随着科学技术的发展,网络技术的普及,数字化技术成为当今科学技术发展的前沿,变电站数字化对进一步提升变电站综合自动化水平将起到极大促进作用,是未来变电站建设的发展方向.利用数字化技术来解决目前综合自动化变

    2、电站存在的问题已成为可能.本变电站就是利用数字化技术使变电站的信息采集,传输,处理,输出过程全部数字化,并使通信网络化,模型和通信协议统一化,设备智能化,运行管理自动化. 通过本次设计,学习了设计的基本方法,巩固学过的知识,培养独立分析问题的能力,而且加深对变电站的全面了解. 关键词:主接线,短路电流,电气设备,主变保护,配电装置,EDCS-6200Abstract:.According to the design request, in the design process, according to the transformer substation geographical envir

    3、onment, the capacity and various return routes number determined the transformer substation electricity host wiring and the station use electricity the wiring, and chooses various transformers the model; Carries on the parameter computation, the picture equivalent network chart, and calculates vario

    4、us voltages rank side the short-circuit current, lists the short-circuit current result table; Calculates the return route continually operating current, chooses each kind of high pressure electrical equipment, and verifies various high pressure unit according to the correlation engineering factor a

    5、nd the short-circuit current computed result table. Along with the science and technology development, the networking popularization,the digitized technology will become now the science and technology development the front, the transformer substation digitization to further promotes the transformer

    6、substation synthesis automation level to get up to the limit the big promoter action, is the future transformer substation construction development direction. Solves at present using the digitized technology to synthesize the automated transformer substation existence the question possibly to become

    7、.This transformer substation is causes the transformer substation using the digitized technology information gathering, the transmission, processing, the output process to digitize completely, and causes the correspondence network, the model and communication protocol unitizing, the equipment intell

    8、ectualization, the movement management automation. Through this design, has studied the design essential method, since the consolidated four years have studied the knowledge, raises the independent analysis question ability, moreover deepens to the transformer substation comprehensive understanding.

    9、 Key words:Main wiring, Short-circuit current, Electrical equipment, The host changes the protection, Power distribution equipment,EDCS-6200目 录前言5第一章原始资料分析6第二章主接线的设计8第三章 变压器的选择113.1主变压器的选择113.1.1 主变压器台数的选择123.1.2 主变压器型式的选择123.1.3主变压器选择:13第四章短路电流计算和主要电气设备选择164.1短路计算的目的,规定与步骤164.1.1短路电流计算的目的164.1.2短路计

    10、算的一般规定164.2电气设备选择的一般原则164.3按正常工作条件选择电气设备184.3.1额定电压184.3.3环境条件的影响184.4电气设备选择18第五章 继电保护配置395.1系统继电保护及自动装置395.2继电保护配置原则395.3主变压器保护39第六章 电测量仪表与绝缘监视装置416.1电测量仪表416.2电测量仪表416.3变配电装置中各部分仪表的配置41参考文献:43设计体会:44前言电力是我国主要能源行业,是国民经济基础产业和公用事业,是资金密集的装置型产业,同时也是资源密集型产业。无论电源还是电网,在建设和生产运营中都需要占用和消费大量资源,包括土地、水资源、环境容量以及

    11、煤炭、石油、燃气等各类能源,贯穿于电力规划、设计建设一直到生产运营全过程。电力工业的长足发展和电力的高效利用,是社会经济进步和节约型社会建设的根本保障。随着我国经济实力的不断增强,电力工业正在迅速发展,全国发电装机容量2000年4月突破3亿KW,2004年5月达到4亿KW,2005年12月已达到5亿KW。据预测,到2010年,中国发电装机容量将超过7亿KW,2020年将达到11亿KW左右.中国已经成为世界上名副其实的电力生产和消费大国。虽然我国电力建设取得了长足的发展,但与发达国家相比,中国的电力工业任有差距。2005年中国的人均电力装机容量仅为0.38KW,人均用电量约1800KW.h。大致

    12、相当于美国2001年水平的1/8,日本2002年水平的1/5,仅相当于韩国2002年水平的1/3.因此,发展中国电力工仍然是主要的任务。我国是以煤炭为主要一次能源的国家,这种能源结构决定了我国发电以煤电(火电)为主的基本格局。2003年底我国燃煤火电发电装机容量占全国发电总装机容量的74%,发电量占全国总发电量的82.6%。为此,火力发电任然是我国发电行业的主力军。根据设计要求的任务,使我对三年来所学的知识更进一步的巩固和加强,并从中获得一些较为实际的工作经验.由于在设计中查阅了大量的相关资料,所以开始逐步掌握了查阅,运用资料的能力,又可以总结三年来所学的电力工业的部分相关知识,为我们日后的工

    13、作打下了坚实的基础本要从理论上在电气主接线设计,短路电流计算,电气设备的选择,配电装置的布局,防雷设计,发电机、变压器和母线的继电保护等方面做详尽的论述,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证该火电厂实际设计的合理性与经济性。在计算和论证的过程中,结合新编电气工程手册规范,进一步完善设计。第一章 原始资料分析原始资料1、电厂规模:(1) 装机容量:装机3台,容量为3*50MW,,(2) 机组年利用小时数:TMAX=5000h(3) 气象条件:年最高温度38度,平均气温25度,气象条件一般,无特殊要求(4) 厂用电率:按6%考虑2、电力负荷及电力系统连接情况(1)1

    14、0KV电压等级:12KM电缆馈线15回,平均每回输送容量2MW,最大负荷35MW,最小负荷25MW,COS = 0.85,Tmax = 4500h,为、类负荷。(2)35KV电压等级: 22KM架空出线2回,平均每回输送容量为10MW,最大负荷25MW,最小负荷为15MW,COS=0.85,Tmax =5200h,为、类负荷(3)110KV电压等级:100KM架空出线3回,110KV电压级与容量为5000MW的电力系统连接,接受该发电厂的剩余功率。系统归算到本电厂110KV母线上的标幺值电抗X*S = 0.04(基准容量为100MVA)。原始资料分析(1) 根据原始资料,本电厂为中小型火力发电

    15、厂,其容量为:3*50=150(MW),占电力系统总容量的150/(5000+150)*100%=2.9%,未超过电力系统的检修备用容量8%15%和事故备用容量10%的限额,说明该电厂在未来电力系统中地位和作用并非至关重要。(2) 该厂为火电厂,年利用小时数为5000h,等于5000h,说明在电力系统中承担基荷,主要供应、类负荷用电。必须采用供电较为可靠的接线形式,且保证有两路电源供电。(3) 从负荷特点及电压等级可知,10KV电压等级上的地方负荷容量不大共有15回电缆馈线,采用直馈线为宜;35KV电压等级出线为2回架空线路,为保证检修出线断路器不致对该回路停电,拟采取单母线分段接线形式为宜;

    16、110KV电压级与系统有3回馈线,呈弱联系形式并送出本厂最大可能电力为150-25-15-150*6%=101(MW),最小可能接受本厂送出电力为150-35-25-1506%=81MW,故110KV级的接线对可靠性要求较高。第二章 主接线的设计发电厂和变电所的电气主接线是保证电网安全可靠经济运行的关键,是电气设备布置选择自动化水平和二次回路设计的原则和基础。(1)根据给定的任务书,进行分析10KV出线回路数为15回。35KV出线回路数为2回。110KV出线回路为3回。电厂占电力系统总容量的150/(5000+150)*100%=2.9%。电厂的功率因数COS=0.85。发电厂运行方式最大负荷

    17、时69MW,最小负荷49MW,此时发电机并未满发,故多余功率送回系统,若有功率缺额由系统供给。10KV近区负荷加限流电抗器。由于近区负荷较多供电应该采用有母线的接线形式,采用单母分段或者双母线的接线形式。 配电装置的每组接线上,应装设避雷器,系统加装避雷器容量为25MW以上的直配发电机,应在每台电机出线处装一组避雷器。互感器的加装,凡装有断路器回路的应装设电流互感器,发电机和变压器的中性点,发电机和变压器的出口加电流互感器,6220KV电压等级的每组母线的三相上应装设电压互感器,出线侧的一相上应装设电压互感器。方案如下:在发电机出口侧仍采用单母分段接线方式,三台50MW的发电机通过各自的一台三

    18、相变压器将功率输送到35KV与110KV侧母线。由于110KV及35KV出线线路较少,所以不采用双母线或带旁路的运行方式,相对来说造价较高。其中35KV侧母线仍采用用断路器分段的单母分段接线方式,110KV侧采用用断路器分段单母分段接线方式。另外,厂用电从发电机出口处引取。其主接线图如下图所示: 电气主接线的设计原则是:应根据发电厂和变电所在电力系统的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、本期建设规模、输送电压等级、进出线回路数、供电负荷的重要性、保证供需平衡、电力系统的线路容量、电气设备性能和周围环境及自动化规划与要求等条件确定。应满足可靠性、灵活性和经济性

    19、的要求。电气主接线的主要要求为:l 灵活性主接线的灵活性有以下几方面的要求:调度灵活,操作方便.可灵活的投入和切除变压器,线路,调配电源和负荷;能够满足系统在正常,事故,检修及特殊运行方式下的调度要求. 检修安全.可方便的停运断路器,母线及其继电器保护设备,进行安全检修,且不影响对用户的供电. 扩建方便.随着电力事业的发展,往往需要对已经投运的变电站进行扩建,从变压器直至馈线数均有扩建的可能.所以,在设计主接线时,应留有余地,应能容易地从初期过度到终期接线,使在扩建时,无论一次和二次设备改造量最小.l 经济性可靠性和灵活性是主接线设计中在技术方面的要求,它与经济性之间往往发生矛盾,即欲使主接线

    20、可靠,灵活,将可能导致投资增加.所以,两者必须综合考虑,在满足技术要求前提下,做到经济合理.投资省.主接线应简单清晰,以节约断路器,隔离开关等一次设备投资;要使控制,保护方式不过于复杂,以利于运行并节约二次设备和电缆投资;要适当限制短路电流,以便选择价格合理的电器设备;在终端或分支变电站中,应推广采用直降式(110/610kV)变电站和以质量可靠的简易电器代替高压侧断路器. 年运行费小.年运行费包括电能损耗费,折旧费以及大修费,日常小修维护费.其中电能损耗主要由变压器引起,因此,要合理地选择主变压器的型式,容量,台数以及避免两次变压而增加电能损失. 占地面积小.电气主接线设计要为配电装置的布置

    21、创造条件,以便节约用地和节省架构,导线,绝缘子及安装费用.在运输条件许可的地方,都应采用三相变压器. 在可能的情况下,应采取一次设计,分期投资,投产,尽快发挥经济效益.综上,方案基本符合设计原则。第三章 变压器的选择变电站主变压器容量和台数的选择,应根据SDJ 161电力系统设计技术规程规定和审批的电力系统规划设计决定。凡装有两台(组)主变压器的变电站,其中一台(组)事故停运后,其余主变压器的容量应保证该站全部负荷的80,同时考虑下一电压等级网络的支持,在计及过负荷能力后的允许时间内,应保证对所有用户的供电。凡装有三台(组)及以上主变压器的变电站,其中一台(组)事故停运后,其余主变压器的容量应

    22、保证对该站全部负荷的正常供电。 在用的变压器主要有31.5MVA、40MVA、50MVA、63 MVA四种规格。3.1主变压器的选择在各种电压等级的变电站中,变压器是主要电气设备之一,其担负着变换网络电压,进行电力传输的重要任务.确定合理的变压器容量是变电所安全可靠供电和网络经济运行的保证.因此,在确保安全可靠供电的基础上,确定变压器的经济容量,提高网络的经济运行素质将具有明显的经济意义.变压器的选择应符合:a)GB/T 17468电力变压器选用导则、GB 1094.1电力变压器 第一部分:总则、GB 1094.2电力变压器 第二部分:温升和GB 1094.5电力变压器 第五部分:承受短路的能

    23、力的要求。 b)变压器的参数应符合:GB/T 6451三相油浸式电力变压器技术参数和要求的规定。 c)变压器的负载能力应符合:GB/T 15164油浸式电力变压器负载导则的要求。 d)变压器的绝缘水平应符合:GB 1094.3电力变压器 第三部分:绝缘水平、绝缘试验和外绝缘空间间隙和GB 311.1高压输变电设备的绝缘配合的规定。e)自耦变压器中性点绝缘水平按经小电抗接地考虑。f)与GIS或HGIS装置连接的变压器,宜对快速暂态过电压(VFTO)的威胁加以校核。3.1.1 主变压器台数的选择为保证供电可靠性,变电站一般装设两台主变,当只有一个电源或变电站可由低压侧电网取得备用电源给重要负荷供电

    24、时,可装设一台.本设计变电站有两回电源进线,且低压侧电源只能由这两回进线取得,故选择两台主变压器.3.1.2 主变压器型式的选择l 相数的确定在330kv及以下的变电站中,一般都选用三相式变压器.因为一台三相式变压器较同容量的三台单相式变压器投资小,占地少,损耗小,同时配电装置结构较简单,运行维护较方便.如果受到制造,运输等条件限制时,可选用两台容量较小的三相变压器,在技术经济合理时,也可选用单相变压器.绕组数的确定在有三种电压等级的变电站中,如果变压器各侧绕组的通过容量均达到变压器额定容量的15%及以上,或低压侧虽然无负荷,但需要在该侧装无功补偿设备时,宜采用三绕组变压器.l 绕组连接方式的

    25、确定变压器绕组连接方式必须和系统电压相位一致,否则不能并列运行.电力系统采用的绕组连接方式只有星接和角接,高,中,低三侧绕组如何组合要根据具体工程来确定.我国110KV及以上电压,变压器绕组都采用星接,35KV也采用星接,其中性点多通过消弧线圈接地.35KV及以下电压,变压器绕组都采用角接.l 结构型式的选择三绕组变压器在结构上有两种基本型式.升压型.升压型的绕组排列为:铁芯中压绕组低压绕组高压绕组,高,中压绕组间距较远,阻抗较大,传输功率时损耗较大.降压型.降压型的绕组排列为:铁芯低压绕组中压绕组高压绕组,高,低压绕组间距较远,阻抗较大,传输功率时损耗较大.应根据功率传输方向来选择其结构型式

    26、.变电站的三绕组变压器,如果以高压侧向中压侧供电为主,向低压侧供电为辅,则选用降压型;如果以高压侧向低压侧供电为主,向中压侧供电为辅,也可选用升压型.l 调压方式的确定变压器的电压调整是用分接开关切换变压器的分接头,从而改变其变比来实现.无励磁调压变压器分接头较少,且必须在停电情况下才能调节;有载调压变分接头较多,调压范围可达30%,且分接头可带负荷调节,但有载调压变压器不能并联运行,因为有载分接开关的切换不能保证同步工作.根据变电所变压器配置,应选用无载调压变压器.3.1.3主变压器选择: a)应选用有载调压变压器,调压分接头范围: 11081.5%/10.5kV或11081.5%/11kV

    27、。 b)阻抗电压百分比及允许偏差:普通变压器105% ;高阻抗变压器145%175%。 c)冷却方式:优先选用自然冷却方式(ONAN)或风冷却方式(ONAF),当变压器输出容量受温升、空间等条件限制时,可采用强油风冷循环冷却方式(OFAF)。 厂用电变压器容量的选择和校验应符合下列原则:a)满足在各种运行方式下,可能出现的最大负荷。b)一台厂用电变压器计划检修或故障时,其余厂用电变压器应能担负I、类厂用电负荷或短时担负厂用电最大负荷。但可不考虑一台厂用电变压器计划检修时另一台厂用电变压器故障或两台厂用电变压器同时故障的情况。c)保证需要自启动的电动机在故障消除后电动机启动时所连接的厂用电母线电

    28、压不低于额定电压的60%-65%。d)装设两台互为备用的厂用电电源变压器时,每台厂用电变压器的额定容量应满足所有I、n类负荷或短时满足厂用电最大负荷的需要。e)装设三台厂用电电源变压器互为备用或其中一台为明备用时,计及负荷分配不均匀等情况,每台的额定容量宜为厂用电最大负荷的50%-60%。f)装设兰台以上厂用电电源变压器时,应按其接线的运行方式及所连接的负荷分析确定。g)厂用电配电变压器容量选择应满足所连接的最大负荷需要。h)厂用电变压器不宜采用强迫风冷时持续翰出容量作为额定容量选择的依据。但对不经常运行或经常短时运行的厂用电配电变压器应充分利用其过负荷能力。主变压器的选择1、2、3号主变压器

    29、的容量:变比:121/11查工厂常用电气设备手册知,所选变压器型号为:厂用变压器的选择:(1)厂变的容量为:S=(50*3)*6%/cos=11250KVA变比:10.5/0.4额定电流:Igmax=1.05查工厂常用电气设备手册知,所选变压器型号为:厂用变压器采用Y/d11接法第四章 短路电流计算和主要电气设备选择4.1短路计算的目的,规定与步骤4.1.1短路电流计算的目的在发电厂和变电站的电气设计中,短路电流计算是其中的一个重要环节.其计算的目的主要有以下几方面: 在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算.在选择电

    30、气设备时,为了保证设备在正常运行和故障情况下都能安全,可靠地工作,同时又力求节约资金,这就需要进行全面的短路电流计算.例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定;计算短路电流冲击值,用以校验设备动稳定. 在设计屋外高压配电装置时,需按短路条件校验软导线的相间和相相对地的安全距离.4.1.2短路计算的一般规定计算的基本情况:电力系统中所有电源均在额定负载下运行.所有同步电机都具有自动调整励磁装置(包括强行励磁).短路发生在短路电流为最大值时的瞬间.所有电源的电动势相位角相等.应考虑对短路电流值有影响的

    31、所有元件,但不考虑短路点的电弧电阻.对异步电动机的作用,仅在确定短路电流冲击值和最大全电流有效值时才予以考虑.接线方式 计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方式(即最大运行方式),不能用仅在切换过程中可能并列运行的接线方式.4.2电气设备选择的一般原则 由于电气设备和载流导体得用途及工作条件各异,因此它们的选择校验项目和方法也都完全不相同。但是,电气设备和载留导体在正常运行和短路时都必须可靠地工作,为此,它们的选择都有一个共同的原则。 电气设备选择的一般原则为: 1.应满足正常运行检修短路和过电压情况下的要求并考虑远景发展。 2.应满足安装地点和当地环境条件校核。

    32、3.应力求技术先进和经济合理。 4.同类设备应尽量减少品种。 5.与整个工程的建设标准协调一致。 6.选用的新产品均应具有可靠的试验数据并经正式签订合格的特殊情况下选用未经正式鉴定的新产品应经上级批准。 技术条件: 选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。 1.电压 选用的电器允许最高工作电压Umax不得低于该回路的最高运行电压Ug,即,UmaxUg 2.电流 选用的电器额定电流Ie不得低于 所在回路在各种可能运行方式下的持续工作电流Ig ,即IeIg 校验的一般原则: 1.电器在选定后应按最大可能通过的短路电流进行动热稳定校验,校验的短路电流一般取最严重

    33、情况的短路电流。 2.用熔断器保护的电器可不校验热稳定。 3.短路的热稳定条件 Qdt在计算时间ts内,短路电流的热效应(KA2S) Itt秒内设备允许通过的热稳定电流有效值(KA2S) T设备允许通过的热稳定电流时间(s) 校验短路热稳定所用的计算时间Ts按下式计算 t=td+tkd式中td 继电保护装置动作时间内(S) tkd断路的全分闸时间(s) 4.动稳定校验 电动力稳定是导体和电器承受短时电流机械效应的能力,称动稳定。满足动稳定的条件是: 上式中短路冲击电流幅值及其有效值 允许通过动稳定电流的幅值和有效值 5.绝缘水平: 在工作电压的作用下,电器的内外绝缘应保证必要的可靠性。接口的绝

    34、缘水平应按电网中出现的各种过电压和保护设备相应的保护水平来确定。 由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。 高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能方式下回路持续工作电流的要求。 4.3按正常工作条件选择电气设备4.3.1额定电压 选择电气设备时,一般可按照电气设备的额定电压不低于装置地点的电网额定电压的条件选择,即 5.3.2额定电流 电气设备的额定电流是指在额定环境温度下,电气设备的长期允许电流。应不小于该回路在各种合理运行方式下的最大持续工作电流,即4.3.3环境条件的影响当电气设备安装地点的环境条件如

    35、温度、风速、污秽等级、海拔高度、地震烈度和覆冰厚度等超过一般电气设备使用条件时,应采取措施。此外,还应按电器的装置地点、使用条件、检修和运行等要求,对电器进行种类和型式的选择。4.4电气设备选择1、短路热稳定校验短路电流通过电器时,电气设备各部件温度应不超过允许值。满足热稳定的条件为2、电动力热稳定校验 满足动稳定的条件为 3、经计算选择结果如下:地 点最大电流发电机G1 G2G3 35kv母线10kv母线1、2、3号主变4、选择电气设备 根据得到的最大电流表,选择电气设备5、电气设备参数将得到的各个电气设备参数列表 隔离开关参数隔离开关型号额定电压(KV)额定电流(A)动稳定电流(KA)热稳

    36、定电流(KA)GN1-101020008026GN1010T10400016085GW4-1101106005015.8断路器参数表断路器型号额定电压(KV)额定电流(A)额定断开电流(KA)极限通过电流(KA)热稳定电流(KA)固有分闸时间(S)1S4SSN10-1010200040130400.06SN1-10110100018.455320.06SW4-1101040011.656300.1SN4-10-G1050001053001730.15 电流互感器参数表电流互感器型号额定电流比1s热稳定倍数动稳定倍数LAJ-104000/55090LFZ110400/575130LCWDL110

    37、GY4*300/535656、根据满足条件的电压和电流选择:(1)三台发电机侧最大持续电流为:发电机侧额定工作电压:7、断路器的选择:用电负荷或某线路接入或退出电网,起倒换运行方式的作用;当设备或线路上发生故障时,可通过继电保护装置联动断路器迅速切除故障用电设备或线路,保证无故障部分仍正常运行。由此可见,高压断路器在电力系统中担负着控制和保护电气设备或线路的双重作用。高压断路器具有分断能力强、性能稳定、工作可靠和运行维护方便的特点,其核心部件是灭弧装置和触头。按使用不同的灭弧介质而生产了各类高压断路器,目前我国电力系统中应用的断路器有如下几种:(1)高压空气断路器是以压缩空气为灭弧介质和弧隙绝

    38、缘介质。并兼作操作机构的动力,操作机构与断路器合为一体。目前我国生产的KW4、KW5系列高压空气断路器的空气压力在2兆帕以上,多用于是10KV及以上的电力系统中。(2)六氟化硫(SF6)高压断路器则采用SF6气体作为灭弧介质,与其它高压元件组成全封闭式高压断路器,因此不受环境条件影响,运行安全可靠,在电力系统中,尤其是在110KV及以上电力系统中得到越来越广泛的采用。(3)真空高压断路器是利用真空作为绝缘介质,其绝缘强度最高,而且绝缘强度恢复快。其真空灭弧室是高强度的真空玻璃泡构成,真空度可达到汞柱,多用10KV及以上的电力系统中。(4)油高压断路器是利用变压器油作为灭弧和弧隙绝缘介质。按其绝

    39、缘结构及变压器油所起的作用不同,分为多油式和少油式两种高压断路器。多油高压断路器的变压器油除了作为灭弧介质外,还作为弧隙绝缘及带电部分与接地外壳(油箱)之间的绝缘。少油高压断路器的变压器油只作为灭弧介质和弧隙绝缘介质,其油箱带电,油箱对地绝缘则通过瓷介质(支持瓷套)来实现。少油高压断路器的灭弧能力较强,工作安全可靠,维护方便,而且体积小,用油量少、重量轻,价格便宜,所以在电力系统中获得最为广泛的采用。在20KV及以下电压等级的供配电系统中广泛采用SN10系列(户内式)断路器,在 20KV以上则大量使用SW4和SW6(户外式)断路器。断路器的主要功能:正常运行时,用它来例换运行方式,把设备或线路

    40、发生故障时,能快速切除故障回路,保证无故障部分正常运行,能起保护作用。高压断路器是开关电器中最为完善的一种设备。其最大特点是能断开电路中负荷电流和短路电流,因此,在运行中其开断能力是标志性能的基本指标。所谓开断能力,就是指断路器在切断电流时熄灭电弧的能力,以保证顺利地分、合电路的任务。发电机侧断路器的选择:额定电压:额定电流:=3390A最大开端容量为:可选择发电机侧断路器的型号为:SN210主变低压侧断路器的选择:额定电压:额定电流:最大开端容量为:选择1号主变低压侧断路器的型号为:SN3-103号主变高压侧断路器的选择:额定电压:额定电流:选择3号主变高压侧断路器为: SW2-35110k

    41、v高压侧断路器的选择:额定电压:额定电流:选择110KV高压侧断路器的型号为:SW4-1108、隔离开关的选择:选择隔离开关的方法和要求与选择断路器相同,为了使所选择的隔离开关符合要求,又使计算方便,各断路器两侧的隔离开关,原则上按断路器计算数据进行选择。隔离开关是一种没有专门灭弧装置的开关设备,主要用来断开无负荷电流的电路,隔离高压电流,在分闸状态时有明显的断开点,以保证其他电气设备的安全检修。在合闸状态时能可靠地通过正常负荷电流及短路故障电流。因它未有专门的灭弧装置,不能切断负荷电流及短路电流。因此,隔离开关只能在电路已被断路器断开的情况下才能进行操作,严禁带负荷操作,以免造成严重的设备和

    42、人身事故。只有电压互感器、避雷器、励磁电流不超过2A的空载变压器及电流不超过5A的空载线路,才能用隔离开关进行直接操作。高压隔离开关一般可分为户内式和户外式两种。(1)户外式高压隔离开关GW435G型高压隔离开关也是目前应用较广泛的设备。它为双柱式结构,制成单极型式,借助于交叉连杆组成三极联动的隔离开关,也可作单极使用。主要用于220KV及以下各型配电装置,系列全,可以高型布置,重量较轻,可以手动,电动操作。GW6型高压隔离开关的特点为220500KV,单柱、钳夹、可以分相布置,220KV为偏折,330KV为对称折,多用于硬母线布置或做为母线隔离开关 。GW7型高压隔离开关的特点为220500

    43、KV,三柱式、中间水平转动,单相或三相操作,可以分相布置,多用于330KV及以上的屋外中型配电装置。(2)户内式高压隔离开关GN6、GN10的特点为三级,可以前后连接,可以立装、平装和斜装,价格比较便宜,主要用于屋外配电装置,成套的高压开关柜;GN10的特点为单极,大电流300013000A,可以手动、电动操作,用于大电流和发电机回路;GN18和GN22的特点为三级,10KV,大电流20003000A,机械锁紧,用于大电流回路和发电机回路。发电机G1、G2侧隔离开关的选择:额定电压:额定电流:=1804A选择发电机侧隔离开关的型号为:GN1010T/3000160同理,选择发电机G1、G2侧的

    44、隔离开关为:GN1010T/300016035kv母线高压侧隔离开关的选择:额定电压:额定电流:选择母线高压侧母联隔离开关的型号为GN1010T/5000200110kv侧隔离开关的选择:额定电压:额定电流:选择高压侧隔离开关的型号为:GW4-110D/10000809、电压互感器的选择:电压互感器是一种电压的变换装置,可将高电压变换为低电压,以便用低压量值反映高压量值的变化可以直接用普通电气仪表进行测量。由于电压互感器二次侧均为100V,使测量仪表和继电器电压线圈标准化,因此电压互感器在电力系统中得到了广泛应用。a)各电压互感器除供给测量仪表和继电保护外,另有辅助绕组,供给保护及绝缘监察装置

    45、用。电压互感器的配置原则如下:b)母线除旁路母线外,一般工作及备用母线都装有一组电压互感器,用于同步、测量仪表和保护装置。c)线路 35KV级以上输电线路,当对端有电源时,为了监视线路有无电压、进行同步和设置重合闸,装有一台单相电压互感器。d)发电机 一般装23组电压互感器。一组(三只单相、双绕组)供自动调节励磁装置。另一组供测量仪表、同步和保护装置使用,该互感器采用三相五柱式或三只单相接地专用互感器,其开口三角形供发电机在未并列之前检查是否接地之用。当互感器负荷太大时,可增设一组不完全星形连接的互感器,专供测量仪表使用。5万KW级以上发电机中性点常接有单相电压互感器,用于100%定子接地保护

    46、。e)变压器低压侧有时为了满足同步或继电保护的要求,设有一组电压互感器。电压互感器的形式选择如下:(1)10KV的配电装置一般采用油浸绝缘结构;在高压开关柜中或在布置地方比较狭窄的地方,可采用树脂浇注绝缘结构。当需要零序电压时,一般采用三相五株式电压互感器。(2)220KV及其以上的配电装置,当容量和准确度等级满足要求时,一般采用电容式电压互感器。(3)接在110KV及其以上线路侧的电压互感器,当线路上装有载波通讯时,应尽量与耦合电容器结合,统一选用电容式电压互感器。(4)兼作为泄能用的电压互感器,应选用电磁式电压互感器。发电机侧及母线侧电压互感器的选择:额定电压:选择发电机侧电压互感器的型号为:JDZ1035kv高压侧电压互感器的选择:额定电压:选择变压器高压侧电压互感器的型号为:JDCF35WB110kv高


    注意事项

    本文(350MW火力发电厂电气部分设计.doc)为本站会员(星星)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922