欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    《复变函数与积分变换复旦大学修订版》全部_习题答案.doc

    • 资源ID:1123936       资源大小:3.65MB        全文页数:38页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《复变函数与积分变换复旦大学修订版》全部_习题答案.doc

    1、复变函数与积分变换(修订版)课后答案(复旦大学出版社)复变函数与积分变换 (修订版)主编:马柏林(复旦大学出版社) 课后习题答案 38 / 38习题一1. 用复数的代数形式a+ib表示下列复数.解解: 解: 解: 2.求下列各复数的实部和虚部(z=x+iy)R); :设z=x+iy则,解:设z=x+iy,解:,解:,解:当时,;当时,3.求下列复数的模和共轭复数解:解:解:解:4、证明:当且仅当时,z才是实数证明:若,设,则有,从而有,即y=0z=x为实数若z=x,x,则命题成立5、设z,w,证明: 证明6、设z,w,证明下列不等式并给出最后一个等式的几何解释证明:在上面第五题的证明已经证明了

    2、下面证 从而得证几何意义:平行四边形两对角线平方的和等于各边的平方的和7.将下列复数表示为指数形式或三角形式解:其中解:其中解:解:.解:解:8.计算:(1)i的三次根;(2)-1的三次根;(3) 的平方根.i的三次根解:-1的三次根解:的平方根解:9.设. 证明:证明:,即又n2 z1从而11.设是圆周令,其中.求出在a切于圆周的关于的充分必要条件.解:如图所示因为=z: =0表示通过点a且方向与b同向的直线,要使得直线在a处与圆相切,则CA过C作直线平行,则有BCD=,ACB=90故-=90所以在处切于圆周T的关于的充要条件是-=9012.指出下列各式中点z所确定的平面图形,并作出草图.解

    3、:(1)、argz=表示负实轴(2)、|z-1|=|z|表示直线z=(3)、1|z+i|Imz解:表示直线y=x的右下半平面5、Imz1,且|z|2解:表示圆盘内的一弓形域。习题二1. 求映射下圆周的像.解:设则 因为,所以所以 , 所以即,表示椭圆.2. 在映射下,下列z平面上的图形映射为w平面上的什么图形,设或. (1); (2); (3) x=a, y=b.(a, b为实数)解:设所以(1) 记,则映射成w平面内虚轴上从O到4i的一段,即(2) 记,则映成了w平面上扇形域,即(3) 记,则将直线x=a映成了即是以原点为焦点,张口向左的抛物线将y=b映成了 即是以原点为焦点,张口向右抛物线

    4、如图所示.3. 求下列极限. (1) ;解:令,则.于是.(2) ;解:设z=x+yi,则有显然当取不同的值时f(z)的极限不同所以极限不存在.(3) ;解:=.(4) .解:因为所以.4. 讨论下列函数的连续性:(1) 解:因为,若令y=kx,则,因为当k取不同值时,f(z)的取值不同,所以f(z)在z=0处极限不存在.从而f(z)在z=0处不连续,除z=0外连续.(2) 解:因为,所以所以f(z)在整个z平面连续.5. 下列函数在何处求导?并求其导数.(1) (n为正整数);解:因为n为正整数,所以f(z)在整个z平面上可导.(2) .解:因为f(z)为有理函数,所以f(z)在处不可导.从

    5、而f(z)除外可导.(3) .解:f(z)除外处处可导,且.(4) .解:因为.所以f(z)除z=0外处处可导,且.6. 试判断下列函数的可导性与解析性.(1) ;解:在全平面上可微.所以要使得, , 只有当z=0时,从而f(z)在z=0处可导,在全平面上不解析.(2) .解:在全平面上可微.只有当z=0时,即(0,0)处有,.所以f(z)在z=0处可导,在全平面上不解析.(3) ;解:在全平面上可微.所以只有当时,才满足C-R方程.从而f(z)在处可导,在全平面不解析.(4) .解:设,则所以只有当z=0时才满足C-R方程.从而f(z)在z=0处可导,处处不解析.7. 证明区域D内满足下列条

    6、件之一的解析函数必为常数.(1) ;证明:因为,所以,.所以u,v为常数,于是f(z)为常数.(2) 解析.证明:设在D内解析,则而f(z)为解析函数,所以所以即从而v为常数,u为常数,即f(z)为常数.(3) Ref(z)=常数.证明:因为Ref(z)为常数,即u=C1, 因为f(z)解析,C-R条件成立。故即u=C2从而f(z)为常数.(4) Imf(z)=常数.证明:与(3)类似,由v=C1得因为f(z)解析,由C-R方程得,即u=C2所以f(z)为常数.5. |f(z)|=常数.证明:因为|f(z)|=C,对C进行讨论.若C=0,则u=0,v=0,f(z)=0为常数.若C0,则f(z)

    7、 0,但,即u2+v2=C2则两边对x,y分别求偏导数,有利用C-R条件,由于f(z)在D内解析,有所以 所以即u=C1,v=C2,于是f(z)为常数.(6) argf(z)=常数.证明:argf(z)=常数,即,于是得 C-R条件 解得,即u,v为常数,于是f(z)为常数.8. 设f(z)=my3+nx2y+i(x3+lxy2)在z平面上解析,求m,n,l的值.解:因为f(z)解析,从而满足C-R条件.所以.9. 试证下列函数在z平面上解析,并求其导数.(1) f(z)=x3+3x2yi-3xy2-y3i证明:u(x,y)=x3-3xy2, v(x,y)=3x2y-y3在全平面可微,且所以f

    8、(z)在全平面上满足C-R方程,处处可导,处处解析.(2) .证明:处处可微,且所以, 所以f(z)处处可导,处处解析.10. 设求证:(1) f(z)在z=0处连续(2)f(z)在z=0处满足柯西黎曼方程(3)f(0)不存在证明.(1)而同理f(z)在z=0处连续(2)考察极限当z沿虚轴趋向于零时,z=iy,有当z沿实轴趋向于零时,z=x,有它们分别为满足C-R条件(3)当z沿y=x趋向于零时,有不存在即f(z)在z=0处不可导11. 设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证在区域D1内解析证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在

    9、区域D内解析所以u(x,y),v(x,y)在D内可微且满足C-R方程,即,得故(x,y),(x,y)在D1内可微且满足C-R条件从而在D1内解析13. 计算下列各值(1) e2+i=e2ei=e2(cos1+isin1)(2)(3)(4)14. 设z沿通过原点的放射线趋于点,试讨论f(z)=z+ez的极限解:令z=rei,对于,z时,r故所以 15. 计算下列各值(1)(2)(3)ln(ei)=ln1+iarg(ei)=ln1+i=i(4)16. 试讨论函数f(z)=|z|+lnz的连续性与可导性解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续设z=x+iy,在复平面内可

    10、微故g(z)=|z|在复平面上处处不可导从而f(x)=|z|+lnz在复平面上处处不可导f(z)在复平面除原点及负实轴外处处连续17. 计算下列各值(1) (2)(3)18. 计算下列各值(1)(2)(3)(4) (5)(6)19. 求解下列方程(1) sinz=2解:(2)解:即(3)解:即(4)解:20. 若z=x+iy,求证(1) sinz=sinxchy+icosxshy证明:(2)cosz=cosxchy-isinxshy证明:(3)|sinz|2=sin2x+sh2y证明:(4)|cosz|2=cos2x+sh2y证明:21. 证明当y时,|sin(x+iy)|和|cos(x+iy

    11、)|都趋于无穷大证明:而当y+时,e-y0,ey+有|sinz|当y-时,e-y+,ey0有|sinz|同理得所以当y时有|cosz|习题三1. 计算积分,其中C为从原点到点1+i的直线段.解 设直线段的方程为,则. 故 2. 计算积分,其中积分路径C为(1) 从点0到点1+i的直线段;(2) 沿抛物线y=x2,从点0到点1+i的弧段.解 (1)设. (2)设. 3. 计算积分,其中积分路径C为(1) 从点-i到点i的直线段;(2) 沿单位圆周|z|=1的左半圆周,从点-i到点i;(3) 沿单位圆周|z|=1的右半圆周,从点-i到点i.解 (1)设. (2)设. 从到(3) 设. 从到6. 计

    12、算积分,其中为.解 在所围的区域内解析从而故7. 计算积分,其中积分路径为(1) (2) (3) (4)解:(1)在所围的区域内,只有一个奇点.(2)在所围的区域内包含三个奇点.故(3)在所围的区域内包含一个奇点,故(4)在所围的区域内包含两个奇点,故10.利用牛顿-莱布尼兹公式计算下列积分. (1) (2) (3) (4) (5) (6) 解 (1)(2)(3) (4) (5) (6) 11. 计算积分,其中为(1) (2) (3) 解 (1) (2) (3) 16. 求下列积分的值,其中积分路径C均为|z|=1. (1) (2) (3) 解 (1) (2)(3) 17. 计算积分,其中积分

    13、路径为(1)中心位于点,半径为的正向圆周(2) 中心位于点,半径为的正向圆周解:(1) 内包含了奇点(2) 内包含了奇点,19. 验证下列函数为调和函数.解(1) 设, 从而有,满足拉普拉斯方程,从而是调和函数.(2) 设, 从而有,满足拉普拉斯方程,从而是调和函数. ,满足拉普拉斯方程,从而是调和函数.20.证明:函数,都是调和函数,但不是解析函数证明: ,从而是调和函数. ,从而是调和函数.但 不满足C-R方程,从而不是解析函数.22.由下列各已知调和函数,求解析函数(1) (2)解 (1)因为 所以 令y=0,上式变为从而(2) 用线积分法,取(x0,y0)为(1,0),有由,得C=02

    14、3.设,其中各不相同,闭路C不通过,证明积分等于位于C内的p(z)的零点的个数.证明: 不妨设闭路C内的零点的个数为k, 其零点分别为24.试证明下述定理(无界区域的柯西积分公式): 设f(z)在闭路C及其外部区域D内解析,且,则其中G为C所围内部区域.证明:在D内任取一点Z,并取充分大的R,作圆CR: ,将C与Z包含在内则f(z)在以C及为边界的区域内解析,依柯西积分公式,有因为 在上解析,且所以,当Z在C外部时,有即设Z在C内,则f(z)=0,即故有:习题四1. 复级数与都发散,则级数和发散.这个命题是否成立?为什么?答.不一定反例: 发散但收敛发散收敛.2.下列复数项级数是否收敛,是绝对

    15、收敛还是条件收敛?(1) (2) (3) (4) (5) 解 (1) 因为发散,所以发散(2)发散 又因为所以发散(3) 发散,又因为收敛,所以不绝对收敛.(4) 因为所以级数不绝对收敛.又因为当n=2k时, 级数化为收敛当n=2k+1时, 级数化为也收敛所以原级数条件收敛(5) 其中 发散,收敛所以原级数发散.3.证明:若,且和收敛,则级数绝对收敛.证明:设因为和收敛所以收敛又因为,所以且当n充分大时, 所以收敛而收敛,收敛所以收敛,从而级数绝对收敛.4.讨论级数的敛散性解 因为部分和,所以,不存在.当而时(即),cosn和sinn都没有极限,所以也不收敛.故当和时, 收敛.5.幂级数能否在

    16、z=0处收敛而在z=3处发散.解: 设,则当时,级数收敛,时发散.若在z=0处收敛,则若在z=3处发散, 则显然矛盾,所以幂级数不能在z=0处收敛而在z=3处发散6.下列说法是否正确?为什么?(1)每一个幂级数在它的收敛圆周上处处收敛.(2) 每一个幂级数的和函数在它的收敛圆内可能有奇点.答: (1) 不正确,因为幂级数在它的收敛圆周上可能收敛,也可能发散.(2) 不正确,因为收敛的幂级数的和函数在收敛圆周内是解析的.7.若的收敛半径为R,求的收敛半径。解: 因为所以 8.证明:若幂级数的 系数满足,则(1)当时, (2) 当时, (3) 当时, 证明:考虑正项级数由于,若,由正项级数的根值判

    17、别法知,当,即,收敛。当,即,不能趋于零,级数发散.故收敛半径.当时, ,级数收敛且.若,对当充分大时,必有不能趋于零,级数发散.且9.求下列级数的收敛半径,并写出收敛圆周。(1) (2) (3) (4) 解: ()收敛圆周(2) 所以收敛圆周(3) 记 由比值法,有要级数收敛,则级数绝对收敛,收敛半径为所以收敛圆周(4) 记 所以时绝对收敛,收敛半径收敛圆周10.求下列级数的和函数.(1) (2) 解: (1)故收敛半径R=1,由逐项积分性质,有:所以于是有:(2) 令:故R=, 由逐项求导性质由此得到即有微分方程故有:,A, B待定。所以 11.设级数收敛,而发散,证明的收敛半径为1证明:

    18、因为级数收敛设若的收敛半径为1则现用反证法证明若则,有,即收敛,与条件矛盾。若则,从而在单位圆上等于,是收敛的,这与收敛半径的概念矛盾。综上述可知,必有,所以12.若在点处发散,证明级数对于所有满足点都发散.证明:不妨设当时,在处收敛则对,绝对收敛,则在点处收敛所以矛盾,从而在处发散.13.用直接法将函数在点处展开为泰勒级数,(到项),并指出其收敛半径.解:因为奇点为所以又于是,有展开式14.用直接法将函数在点处展开为泰勒级数,(到项)解:为的奇点,所以收敛半径又于是,在处的泰勒级数为 15.用间接法将下列函数展开为泰勒级数,并指出其收敛性.(1) 分别在和处 (2) 在处(3) 在处 (4)

    19、 在处 (5) 在处 解 (1)(2) (3) (4) (5)因为从沿负实轴不解析所以,收敛半径为R=116.为什么区域内解析且在区间取实数值的函数展开成的幂级数时,展开式的系数都是实数?答:因为当取实数值时,与的泰勒级数展开式是完全一致的,而在内,的展开式系数都是实数。所以在内,的幂级数展开式的系数是实数.17.求的以为中心的各个圆环域内的罗朗级数.解:函数有奇点与,有三个以为中心的圆环域,其罗朗级数.分别为:19.在内将展开成罗朗级数.解:令则而在内展开式为所以,代入可得20.有人做下列运算,并根据运算做出如下结果因为,所以有结果你认为正确吗?为什么?答:不正确,因为要求而要求所以,在不同

    20、区域内21.证明: 用z的幂表示的罗朗级数展开式中的系数为证明:因为和是的奇点,所以在内,的罗朗级数为其中其中C为内任一条绕原点的简单曲线.22. 是函数的孤立奇点吗?为什么?解: 因为的奇点有所以在的任意去心邻域,总包括奇点,当时,z=0。从而不是的孤立奇点.23.用级数展开法指出函数在处零点的级.解:故z=0为f(z)的15级零点24.判断是否为下列函数的孤立奇点,并确定奇点的类型:;解: 是的孤立奇点因为所以是的本性奇点.(2)因为所以是的可去奇点.25. 下列函数有些什么奇点?如果是极点,指出其点: 解: (1)所以是奇点,是二级极点.解: (2) 是奇点,是一级极点,0是二级极点.解

    21、: (3) 是的二级零点而是的一级零点, 是的一级零点所以是的二级极点, 是的一级极点.26. 判定下列各函数的什么奇点? 解: (1)当时, 所以, 是的可去奇点.(2)因为所以, 是的本性奇点.(3) 当时, 所以, 是的可去奇点.27. 函数在处有一个二级极点,但根据下面罗朗展开式:.我们得到“又是的本性奇点”,这两个结果哪一个是正确的?为什么?解: 不对, z=1是f(z)的二级极点,不是本性奇点.所给罗朗展开式不是在内得到的在内的罗朗展开式为28.如果C为正向圆周,求积分的值(1) (2)解:(1)先将展开为罗朗级数,得而 =3在内,,故(2)在内处处解析,罗朗展开式为而=3在内,,

    22、故习题五1. 求下列函数的留数(1)在z=0处解:在0|z|+的罗朗展开式为(2)在z=1处解:在0| 1解:令 令z=ei,则得(3),a0,b0解:令,被积函数R(z)在上半平面有一级极点z=ia和ib故(4). ,a0解:令,则z=ai分别为R(z)的二级极点故(5) ,0,b0解:而考知,则R(z)在上半平面有z=bi一个二级极点从而(6) ,a0解:令,在上半平面有z=ai一个一级极点7. 计算下列积分(1)解:令,则R(z)在实轴上有孤立奇点z=0,作以原点为圆心、r为半径的上半圆周cr,使CR,-R, -r, Cr,r, R构成封闭曲线,此时闭曲线内只有一个奇点i,于是:而故:(

    23、2),其中T为直线Rez=c, c0, 0a1解:在直线z=c+iy (- y 0. 0Im(z)0, 0y0. Im(w)0. 若w=u+iv, 则因为0y0, 0Im(z)0,Im(w)0, (以(,0)为圆心、为半径的圆)3. 求w=z2在z=i处的伸缩率和旋转角,问w=z2将经过点z=i且平行于实轴正向的曲线的切线方向映成w平面上哪一个方向?并作图.解:因为=2z,所以(i)=2i, |=2, 旋转角arg=.于是, 经过点i且平行实轴正向的向量映成w平面上过点-1,且方向垂直向上的向量.如图所示.4. 一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w=z2在z

    24、平面上每一点都具有这个性质吗?答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w=z2在z=0处导数为零,所以在z=0处不具备这个性质.5. 求将区域0x0.解:(1) Re(z)=0是虚轴,即z=iy代入得.写成参数方程为, , .消去y得,像曲线方程为单位圆,即u2+v2=1.(2) |z|=2.是一圆围,令.代入得化为参数方程. 消去得,像曲线方程为一阿波罗斯圆.即 (3) 当Im(z)0时,即,令w=u+iv得.即v0,故Im(z)0的像为Im(w)0.9. 求出一个将右半平面Re(z)0映射成单位圆|w|0,映射成|w|0, 映为单位圆|w|0).(1) 由

    25、f(i)=0得=i,又由arg,即,,得,所以.(2) 由f(1)=1,得k=;由f(i)= ,得k=联立解得.12. 求将|z|1映射成|w|1的分式线性变换w=f(z),并满足条件:(1) f()=0, f(-1)=1. (2) f()=0, , (3) f(a)=a, .解:将单位圆|z|1映成单位圆|w|1的分式线性映射,为 , |1.(1) 由f()=0,知.又由f(-1)=1,知.故.(2) 由f()=0,知,又,于是 .(3) 先求,使z=a,,且|z|1映成|1.则可知 再求w=g(),使=0w=a, ,且|1映成|w|1.先求其反函数,它使|w|1映为|1,w=a映为=0,且

    26、,则 .因此,所求w由等式给出.13. 求将顶点在0,1,i的三角形式的内部映射为顶点依次为0,2,1+i的三角形的内部的分式线性映射.解:直接用交比不变性公式即可求得=.=.14. 求出将圆环域2|z|5映射为圆环域4|w|2映为|w|10.又w=f(z)将|z|=5映为|w|=4,将z=2映为w=-10,所以将|z|4,由此确认,此函数合乎要求.15.映射将z平面上的曲线映射到w平面上的什么曲线?解:略.16. 映射w=ez将下列区域映为什么图形.(1) 直线网Re(z)=C1,Im(z)=C2;(2) 带形区域;(3) 半带形区域.解:(1) 令z=x+iy, Re(z)=C1, z=C

    27、1+iy, Im(z)=C2,则z=x+iC2故将直线Re(z)映成圆周;直线Im(z)=C2映为射线.(2) 令z=x+iy,,则故将带形区域映为的张角为的角形区域.(3) 令z=x+iy,x0,0y0,0Im(z)1, ().17. 求将单位圆的外部|z|1保形映射为全平面除去线段-1Re(w)1映为|w1|1,再用分式线性映射.将|w1|0, 然后用幂函数映为有割痕为正实轴的全平面,最后用分式线性映射将区域映为有割痕-1,1的全平面.故.18. 求出将割去负实轴,Im(z)=0的带形区域映射为半带形区域,Re(w)0的映射.解:用将区域映为有割痕(0,1)的右半平面Re(w1)0;再用将

    28、半平面映为有割痕(-,-1的单位圆外域;又用将区域映为去上半单位圆内部的上半平面;再用将区域映为半带形0Im(w4)0;最后用映为所求区域,故.19. 求将Im(z)1去掉单位圆|z|0的映射.解:略.20. 映射将半带形区域0Re(z)0保形映射为平面上的什么区域.解:因为 可以分解为w1=iz ,由于在所给区域单叶解析,所以(1) w1=iz将半带域旋转,映为0Im(w1),Re(w1)0.(2) 将区域映为单位圆的上半圆内部|w2|0.(3) 将区域映为下半平面Im(w)0时,令u=at.则当a0时,令u=at,则.故原命题成立.9.设证明.证明:10.设,证明:以及证明:同理:11.设

    29、计算.解:当时,若则故=0.若则若则故12.设为单位阶跃函数,求下列函数的傅里叶变换.习题八1.求下列函数的拉普拉斯变换.(1), (2), (3)(4), (5) 解: (1) (2) (3) (4) (5) 2.求下列函数的拉普拉斯变换.(1) (2)解: (1) (2) 3.设函数,其中函数为阶跃函数, 求的拉普拉斯变换.解: 4.求图8.5所表示的周期函数的拉普拉斯变换解:5. 求下列函数的拉普拉斯变换.(1) (2) (3)(4) (5 (6 (7) (8) 解:(1) (2)(4)(5) (6)(7)(8)6.记,对常数,若,证明证明: 7 记,证明:证明:当n=1时,所以,当n=

    30、1时, 显然成立。假设,当n=k-1时, 有现证当n=k时8. 记,如果a为常数,证明:证明:设,由定义9. 记,证明:,即证明:10.计算下列函数的卷积(1) (2) (3) (4) (5) (6 解:(1) (2) (3) (4)(5) (6)11.设函数f, g, h均满足当t0时恒为零,证明以及证明:12.利用卷积定理证明证明:设,则,则,所以13. 求下列函数的拉普拉斯逆变换.(1) (2) (3)(4) (5) (6 解:(1)(2)(3故(4)因为所以(5)其中所以(6)所以14.利用卷积定理证明证明:又因为所以,根据卷积定理15.利用卷积定理证明证明:因为所以,根据卷积定理有1

    31、6. 求下列函数的拉普拉斯逆变换.(1) (2) (3)(4)解:(1) 故(2):(3)故(4)故且所以17.求下列微分方程的解(1) (2) (3) (4) (5) 解: (1)设方程两边取拉氏变换,得为Y(s)的三个一级极点,则(2) 方程两边同时取拉氏变换,得(3)方程两边取拉氏变换,得因为由拉氏变换的微分性质知,若Lf(t)=F(s),则即因为所以故有(4)方程两边取拉氏变换,设Ly(t)=Y(s),得故(5)设Ly(t)=Y(s),则方程两边取拉氏变换,得故18.求下列微分方程组的解(1) (2) 解:(1) 设微分方程组两式的两边同时取拉氏变换,得得(2)代入(1),得(3)代入(1),得(2)设 方程两边取拉氏变换,得(3)代入(1):所以故19.求下列方程的解(1) (2) 解:(1)设Lx(t)=X(s), 方程两边取拉氏变换,得(2)设Ly(t)=Y(s), 方程两边取拉氏变换,得


    注意事项

    本文(《复变函数与积分变换复旦大学修订版》全部_习题答案.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922