1、黄冈职业技术学院毕业论文毕业论文课题名称 冷库制冷系统中活塞式制冷压缩机,螺杆式制冷压缩机的选型方法分析 系 别 机电工程系 专 业 制冷与冷藏技术 班 级 = 姓 名 、 学 号 2、 指导教师 、 原创性声明本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。本论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。本声明的法律责任由本人承担。论文作者签名: 年 月 日 目录摘要.4关键词.4Abstract.4Key words.41.活塞式制冷压缩机的结构及工作原理
2、.51.1活塞式压缩机的分类.51.2活塞式制冷压缩机工作原理与过程.61.3活塞式制冷压缩机主要部件.61.4活塞式制冷压缩机润滑环系统.81.5活塞式制冷压缩机常见故障.92.螺杆式制冷压缩机的结构及工作原理.102.1螺杆式制冷压缩机主要部件.102.2螺杆式制冷压缩机工作原理.112.3螺杆压缩机的润滑系统.112.4螺杆压缩机常见故障.133.活塞式压缩机与螺杆式压缩机性能比较.133.1活塞式压缩机实际输气量与能量调节.133.2螺杆式压缩机实际输气量与能量调节.173.3带经济器的螺杆压缩机系统.194.冷库的分类与发展前景.194.1冷库分类与要求.194.2冷库压缩机性能比较
3、.214.3 压缩机的选型计算.24参考文献.26致谢.27冷库制冷系统中活塞式制冷压缩机,螺杆式制冷压缩机的选型方法分析摘要 随着经济的发展冷链的扩张各地冷库需求不断的增加,冷库的建设迫在眉睫,冷库的设备选型与日常生产运行直接关系着经济效益。本文通过对不同类型的压缩机进行工作原理、工作过程、主要零部件、常见故障以及输气量、能量调节的方法的描述与概论,然后对不同压缩机性能分析与综合比较,为冷库压缩机提供了关键性数据。关键词 活塞压缩机 螺杆压缩机 能量调节 性能Abstract With the development of economy of cold chain expansion ar
4、ound the storage demand unceasing increase, the construction of cold storage imminent, cold storage equipment and daily operation is directly related to the economic benefit. Based on the different types of compressors, working principle, working process, main components, common failures and transmi
5、ssion capacity, energy regulating method is described with the introduction, and then on compressor performance analysis and comprehensive comparison, for refrigerator compressor provided critical data.Key word Piston compressor Screw compressor Energy regulation Performance 1.活塞式制冷压缩机的结构及工作原理1.1活塞式
6、压缩机分类按所采用的工质分类,一般有氨压缩机和氟利昂压缩机两种。按压缩级数分类,有单级压缩和两级压缩。单级压缩机是指压缩过程中制冷剂蒸气由低压至高压只经过一次压缩。而所谓的两级压缩机,压缩过程中制冷剂蒸气由低压至高压要连续经过两次压缩。按作用方式分类,有单作用压缩机和双作用压缩机。其制冷剂蒸气仅在活塞的一侧进行压缩,活塞往返一个行程,吸气排气各一次。而双作用压缩机制冷剂蒸气轮流在活塞两侧的气缸内进行压缩,活塞往返一个行程,吸、排气各两次。所以同样大小的气缸,双作用压缩机的吸气量较单作用的大。但是由于双作用压缩机的结构较复杂,因而目前大都是采用单作用压缩机。 图1-1 压缩机气缸布置形式(a)卧
7、式;( b)直立式;( C)V型;(d)W型;(e)扇形(s)型;(f)星形按制冷剂蒸气在气缸中的运动分类,有直流式和逆流式。所谓直流式是指制冷剂蒸气的运动从吸气到排气都沿同一个方向进行,而逆流式,吸气与排气时制冷剂蒸气的运动方向是相反的。从理论分析来看,直流式与逆流式相比,由于蒸气在气缸中温度及比容的变化较少,故直流式性能较好。但是由于直流式压缩机的进汽阀需装在活塞上,这样便相对增加了活塞的长度和重量,因而功的消耗就增加、检修也麻烦,所以目前生产的压缩机大都采用逆流式型压缩机等。立式压缩机气缸中心线呈垂直位置而卧式压缩机气缸中心线是水平的。V型、W型和S型是高速、多缸、现代型压缩机,其速度一
8、般为9601440转/分,气缸数目多为2、4、6、8 四种,其中如图1-1,字母表示气缸的排列形式。活塞式制冷压缩机,根据其结构特征,还可分为开启式、半封闭式和全封闭式三种。虽然构造各异,但它们之间也有许多共同之处,只是其结构特征不同。开启式制冷压缩机的结构特征在于:压缩机的动力输入轴伸出机体外,通过联轴器或皮带轮与电动机联结,并在伸出处用轴封装置密封。目前,氨压缩机和容量较大的氟利昂压缩机都采用这种结构形式。半封闭式制冷压缩机的结构特点是:压缩机与电动机共用一主轴,并共同组装于同一机壳内,但机壳为可拆式,其上开有各种工作孔用盖板密封。全封闭式制冷压缩机的结构特点在于:压缩机与其驱动电动机共用
9、一个主轴,二者组装在一个焊接成型的密封罩壳中。这种压缩机结构紧凑,密封性好,使用方便,振动小、噪音小,广泛使用在小型自动化制冷和空调装置中。1.2活塞式制冷压缩机工作原理与过程当曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸盖和活塞顶面所构成的工作容积则会发生周期性变化。活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞再次反向运动时,
10、上述过程重复出现。如果不考虑活塞式压缩机实际工作中的容积损失和能量损失(即理想工作过程),则活塞式压缩机曲轴每旋转一周所完成的工作,可分为吸气、压缩和压缩过程、排气过程,即完成一个工作循环。1.2.1吸气过程通过活塞的移动,气缸内容积增大,压力降低,于是吸气管内制冷剂蒸汽顶开吸气阀而进入气缸内直到活塞最大行程另一端。1.2.2压缩过程 活塞从下止点向上运动,吸、排汽阀处于关闭状态,气体在密闭的气缸中被压缩,由于气缸容积逐渐缩小,则压力、温度逐渐升高直至气缸内气体压力与排气压力相等。压缩过程一般被看作是等熵过程。1.2.3排气过程 活塞继续向上移动,致使气缸内的气体压力大于排气压力,则排气阀开启
11、,气缸内的气体在活塞的推动下等压排出气缸进入排气管道,直至活塞运动到上止点。此时由于排气阀弹簧力和阀片本身重力的作用,排气阀关闭排气结束。至此,压缩机完成了一个由吸气、压缩和排气三个过程组成的工作循环。此后,活塞又向下运动,重复上述三个过程,如此周而复始地进行循环。这就是活塞式制冷压缩机的理想工作过程与原理。1.3活塞式制冷压缩机主要部件活塞式制冷压缩机主要由机体、缸盖、侧盖、曲轴、连杆组件、活塞组件、气阀、轴封、油泵、能量调节装置、油循环系统等部件组成。1.3.1机体机体:包括汽缸体和曲轴箱两部分,一般采用高强度灰铸铁(HT20-40)铸成一个整体。它是支承汽缸套、曲轴连杆机构及其它所有零部
12、件重量并保证各零部件之间具有正确的相对位置的本体。汽缸采用汽缸套结构,安装在汽缸体上的缸套座孔中,便于当汽缸套磨损时维修或更换。因而结构简单,检修方便。1.3.2缸盖、侧盖缸盖:制冷压缩机的缸盖起着对气缸上部进行密封的作用,它和机体排气阀一起形成压缩机的排气腔。侧盖:用以密封曲轴箱两侧的窗孔。两侧盖上一般分别装有油面指示器和油冷却器,用来检测曲轴箱油面是否在正常高度及冷却润滑油。1.34曲轴曲轴:曲轴是活塞式制冷压缩机的主要部件之一,传递着压缩机的全部功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。曲轴在运动时,承受拉、压、剪切、弯曲和扭转的交变复合负载,工作条件恶劣,要
13、求具有足够的强度和刚度以及主轴颈与曲轴销的耐磨性。故曲轴一般采用40、45或50号优质碳素钢锻造,但现在已广泛采用球墨铸铁(如QT501.5与QT602等)铸造。1.3.5连杆组件连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对汽体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 连杆体在工作时承受拉、压交变载荷,故一般用优质中碳钢锻造或用球墨铸铁(如QT4010)铸造,杆身多采用工字形截面且中间钻一长孔作为油道。连杆小头通过活塞销与活塞相连,销孔中加衬套以提高耐磨、耐冲击能力。连杆小头衬套常用锡磷青铜ZQSn10-1做成整体筒状,外圆
14、面车有环槽并钻有油孔,内表面开有轴向油槽。连杆大头与曲轴连接。连杆大头一般做成剖分式,以便于装拆和检修。为了改善连杆大头与曲柄销之间的磨损状况,大头孔内一般均装有轴承合金轴瓦即连杆大头轴瓦。连杆大头轴瓦分薄壁和厚壁两种,系列制冷压缩机都采用薄壁轴瓦。轴瓦的上瓦与连杆油孔相应的地方也开有油孔。连杆螺栓用于连接剖分式连杆大头与大头盖。连杆螺栓是曲柄连杆机构中受力严重的零件,它不仅受反复的拉伸且受振动和冲击作用,很容易松脱和断裂,以致引起严重事故。所以对连杆螺栓的设计、加工、装配均有严要求。连杆螺栓常用40Cr、45Cr钢等制造,且采用细牙螺纹,其安装时要求有一定的预紧力,以免在载荷变化时连杆大头上
15、下瓦和曲柄销之间松动敲击,加速机器零件的损坏。1.3.6活塞组件活塞可分为筒形和盘形两大类。我国系列制冷压缩机的活塞均采用筒形结构,它由顶部、环部和裙部三部分组成。活塞顶部组成封闭汽缸的工作面。活塞环部的外圆上开有安装活塞环的环槽,环槽的深度略大于活塞环的径向厚度,使活塞环有一定的活动余地。活塞裙部在汽缸中起导向作用并承受侧压力。活塞的材料一般为铝合金或铸铁。灰铸铁活塞过去在制冷压缩机中应用较广,但由于铸铁活塞的质量大且导热性能差,因此,近年来系列制冷压缩机的活塞都采用铝合金活塞。铝合金活塞的优点是质量轻、导热性能好,表面经阳极处理后具有良好的耐磨性。但铝合金活塞比铸铁活塞的机械强度低、耐磨性
16、差也差。活塞销是用来连接活塞和连杆小头的零件,在工作时承受复杂的交变载荷。活塞销的损坏将会造成严重的事故,故要求其有足够的强度、耐磨性和抗疲劳、抗冲击的性能。因此,活塞销通常用20号钢、20Cr钢或45号钢制造。活塞环包括汽环和油环。汽环的主要作用是使活塞和汽缸壁之间形成密封,防止被压缩蒸气从活塞和汽缸壁之间的间隙中泄漏。为了减少压缩汽体从环的锁口泄漏,多道汽环安装时锁口应相互错开。油环的作用是布油和刮去汽缸壁上多余的润滑油。汽环可装一至三道,油环通常只装一道且装在汽环的下面,常见的油环断面形状有斜面式和槽式两种,斜面式油环安装时斜面应向上。1.3.7气阀、轴封汽阀是压缩机的一个重要部件,属于
17、易损件。它的质量及工作的好坏直接影响压缩机的输汽量、功率损耗和运转的可*性。汽阀包括吸气阀和排气阀,活塞每上下往复运动一次,吸、排气阀各启闭一次,从而控制压缩机并使其完成吸气、压缩、排气等四个工作过程。由于阀门启闭工作频繁且对压缩机的性能影响很大,因此汽阀需满足如下要求:气体流过阀门时的流动阻力要小,要有足够的通道截面,通道表面应光滑,启闭及时、关闭严密,坚韧、耐磨。轴封:轴封的作用在于防止制冷剂蒸汽沿曲轴伸出端向外泄漏,或者是当曲轴箱内压力低于大气压时,防止外界空气漏入。因此,轴封应具有良好的密封性和安全可*性、且结构简单、装拆方便、并具有一定的使用寿命。 轴封装置主要有机械式和填料式两种。
18、目前常用的机械式轴封主要有摩擦环式和波纹管式。其中,国产系列活塞式制冷压缩机大都采用摩擦式轴封,这种轴封由活动环(摩擦环)、固定环、弹簧及弹簧座、压圈和两个“0”形耐油橡胶圈所组成。活动环槽内嵌一橡胶密封圈并与活动环一同套装在轴上,在弹簧力和压圈的作用下,活动环与橡胶圈一同被压紧在轴上且使活动环紧贴在固定环上。工作时弹簧座与弹簧、轴上橡胶密封圈及活动环随同曲轴一起转动,固定环及其上的橡胶圈则固定不动。故工作时活动环和固定环作相对运动,紧贴的摩擦面起防止制冷剂往外泄漏的密封作用,轴上橡胶圈用来密封轴与活动环之间的间隙,固定环上的耐油橡胶密封圈起防止轴封室内润滑油外泄的作用。1.4活塞式制冷压缩机
19、润滑环系统1.4.1润滑的作用润滑是压缩机中的重要问题之一,它不仅影响到压缩机的性能指标,而且跟压缩机的寿命、可靠性、安全性也直接相关。润滑的作用如下:1)使摩擦表面(即轴与轴承、活塞环与气缸壁等运动部件接触面)被油膜分隔,形成液体摩擦或半干摩擦,从而降低压缩机的摩擦功、摩擦热和零件的磨损,提高压缩机的机械效率,增加压缩机的可靠性和耐久性。2)对摩擦表面起冷却和清洁作用。带走摩擦热,使摩擦表面温度不致过高,带走磨屑,改善摩擦表面的工作情况。3)润滑油充满活塞与气缸的间隙和轴封的摩擦表面,增强密封作用。4) 利用压力润滑系统中的压力油,可以作为操纵能量调节机构的动力。1.4.2润滑方式压缩机的润
20、滑方式可分为飞溅润滑和压力润滑两种类型。飞溅润滑是利用运动零件的机械作用,将润滑油送至需要的摩擦表面,半封闭压缩机就有很多的采用飞溅润滑。一方面在连杆大头下端装设甩油勺,将曲轴箱中的油甩向气缸镜面,润滑活塞与气缸壁之间的摩擦表面;另一方面,在电动机一端的轴上装有甩油盘,将油甩起并收集在电动机侧端盖的集油小室上,通过曲轴中的油道,润滑主轴承和连杆轴承。在某些小型立式开启式压缩机中,飞溅润滑仅依靠曲柄连杆机构的运动来实现。压力润滑系统式利用油泵产生的油压,将润滑油通过输油管道输送到需要润滑的各摩擦面,润滑油压力和流量可以按照给定要求实现,因而油压稳定,油压充足,还能对润滑油进行滤清和冷却处理,故润
21、滑效果良好,大大提高了压缩机使用寿命、可靠性和安全性。在我国中、小型制冷压缩机系列中和非标准大型制冷压缩机中均广泛采用压力润滑方式。1.4.3润滑系统图如图1-2图1-21.5活塞式制冷压缩机常见故障1.5.1液击液击是往复式压缩机的致命杀手,往往会在很短时间内造成阀片破碎、连杆和曲轴弯曲甚至断裂。液击是由回液、带液启动等引起的,是系统问题在压缩机上的表现。提升制冷系统的设计、施工和维护技巧可以从根本上防止液击的发生,正确选择和安装膨胀阀、气液分离器、热气旁通阀和曲轴箱电热器、定时化霜、以及避免库温频繁波动是防止回液的具体措施。1.5.2吸气阀片断裂压缩机是压缩气体的机器。通常,活塞每分钟压缩
22、气体1450次(半封压缩机)或2900次(全封压缩机),即完成一次吸气或排气过程的时间为0.02秒甚至更短。阀板上的吸排气孔径的大小以及吸排气阀片的弹性与强度均是按照气体流动而设计的。从阀片受力角度讲,气体流动时产生的冲击力是比较均匀的。液体的密度是气体的数十甚至数百倍,因而液体流动时的动量比气体大得多的,产生的冲击力也大得多。吸气中夹杂较多液滴进入气缸时的流动属于两相流。两相流在吸气阀片上产生的冲击不仅强度大而且频率高,就好像台风夹杂着鹅卵石敲打在玻璃窗上,其破坏性是不言而喻的。吸气阀片断裂是液击的典型特征和过程之一。1.5.3连杆断裂压缩行程的时间约0.02秒,而排气过程会更短暂。气缸中的
23、液滴或液体必须在如此短的时间内从排气孔排出,速度和动量是很大的。排气阀片的情况与吸气阀片相同,不同之处在于排气阀片有限位板和弹簧片支撑,不容易折断。冲击严重时,限位板也会变形翘起。1.5.4压缩机抱轴、卡缸压缩机如果失油或有杂质进入往往会引起抱轴或卡缸,其故障现象为,通电后压缩机不运转,保护器动作。 1.5.5压缩机吸、排气阀关闭不严如果压缩机的吸、排气阀门损坏,即使制冷剂充足系统也不能建立高低压或难以建立合格的高低压,系统不制冷或制冷效果很差。 1.5.6压缩机的震动和噪音这类问题在维修工作中经常发生,一般对制冷性能并没有多大影响,但会使用户感觉不正常,引起的原因往往是管道和机壳相碰、压缩机
24、的固定螺栓松动和减震块脱落等。 1.5.7热保护器损坏热保护器是压缩机的附件,故障一般为断路或动作温度点变小。断路会引起压缩机不工作;动作温度点变小会引起压缩机工作一段时间后就停机并反复如此,该问题往往容易和绕组匝间轻微短路相混淆,区别是热保护器损坏时工作电流是正常的,绕组短路时电流偏大。 2.螺杆式制冷压缩机的结构及工作原理2.1螺杆式制冷压缩机主要部件螺杆式制冷压缩机主要由机壳、转子、轴承、轴封、平衡活塞及能量调节装置等组成。 2.1.1机壳般为剖分式,由机体、吸气端座及排气端座等三部分用螺栓连接组成。机体内腔横断面为双圆相交的横8字形,与置于其内的两个啮合转子的外圆柱面相适合。 转子为一
25、对互相啮合的螺杆,其上具有特殊的螺旋齿形。其中凸齿形的称为阳螺杆(或称阳转子),凹齿形的称为阴螺杆(或称阴转子)。阳螺杆与阴螺杆的齿数比,一般为4:6(大流量的压缩机齿数比可为3:4,当压缩比高达20时,齿数比可采用6:8)。多数情况下,阳螺杆与电动机直接连接,称为主动转子,阴螺杆为从动转子,故阳螺杆多为四头右旋,阴螺杆多为六头左旋。为了使螺杆式制冷压缩机系列化,零件标准化和通用化,我国有关部门规定,螺杆的公称直径为63、80、100、125、160、200和315mm7种,其长径比分为1.0和1.5两种。 2.1.2轴承与轴封螺杆式制冷压缩机的阴、阳螺杆均由滑动轴承(主轴承)和向心推力球轴承
26、支承。主轴承用柱销正确安装固定在吸、排气端座内,止推轴承在排气侧阳、阴螺杆上各装有两只,以承受一定的轴内力。螺杆式制冷压缩机的轴封也多采用摩擦环式机械密封器,安装在主动转子靠联轴器端轴上,其结构和原理同活塞式制冷压缩机的轴封相同。2.1.3平衡活塞由于结构上的差异,因吸、排气侧之间的压力差所引起的,作用在阳螺杆上的轴向合力,比作用在阴螺杆上的轴向合力大得多。因此,阳螺杆上除装设止推轴承外,还增设油压平衡活塞,以减轻阳螺杆对滑动轴承端面的负荷,减轻止推轴承所承受的轴向力。 2.1.4能量调节装置由滑阀、油缸、油活塞、四通电磁换向阀及油管路等组成。活塞装在气缸壁下部两圆交汇处,改变滑阀的位置,即可
27、起调节制冷量的作用。 螺杆式制冷压缩机工作时,齿间基元容积作周期性变化,从而使汽体沿转子轴向移动过程中完成吸汽,压缩和排气过程2.2螺杆式制冷压缩机工作原理螺杆式压缩机的工作是依靠啮合运动着的一个阳转子与一个阴转子,并借助于包围这一对转子四周的机壳内壁的空间完成的。当转子转动时,转子的齿、齿槽与机壳内壁所构成的呈“V”字形的一对齿间容积称为基元容积,其容积大小会发生周期性的变化,同时它还会沿着转子的轴向由吸气口侧向排气口侧移动,将制冷剂气体吸入并压缩至一定的压力后排出。 图2-1其中,a、b、c为从转子吸气侧(一般在转子上方)视图,表示了基元容积从吸气开始到吸气结束的过程;d、e、f为从转子排
28、气侧(一般在转子下方)视图,表示了基元容积从开始压缩到排气结束的过程。在两转子的吸气侧(图中a、b、c所示的转子上部),齿面接触线与吸气端之间的每个基元容积都在扩大,而在转子的排气侧(图中d、e、f所示的转子上部),齿面接触线与排气端之间的基元容积却逐渐缩小。这样,使每个基元容积都从吸气端移向排气端。下面以图2-1中所示某V形基元容积,说明螺杆式制冷压缩机的工作过程。2.2.1吸气过程齿间基元容积随着转子旋转而逐渐扩大,并和吸入孔口连通,气体通过吸入孔口进入齿间基元容积,称为吸气过程。当转子旋转一定角度后,齿间基元容积越过吸入孔口位置与吸入孔口断开,吸气过程结束。值得注意的是,此时阴、阳转子的
29、齿间基元容积彼此并不连通。2.2.2压缩过程压缩开始阶段主动转子的齿间基元容积和从动转子的齿间基元容积彼此孤立地向前推进,称为传递过程。转子继续转过某一角度,主动转子的凸齿和从动转子的齿槽又构成一对新的V形基元容积,随着两转子的啮合运动,基元容积逐渐缩小,实现气体的压缩过程。压缩过程直到基元容积与排出孔口相连通的瞬间为止,此刻排气过程开始。2.2.3排气过程由于转子旋转时基元容积不断缩小,将压缩后具有一定压力的气体送到排气腔,此过程一直延续到该容积最小时为止。随着转子的连续旋转,上述吸气、压缩、排气过程循环进行,各基元容积依次陆续工作,构成了螺杆式制冷压缩机的工作循环。 由上可知,两转子转向相
30、迎合的一面,气体受压缩,称为高压力区;另一面,转子彼此脱离,齿间基元容积吸入气体,称为低压力区。高压力区与低压力区由两个转子齿面间的接触线所隔开。另外,由于吸气基元容积的气体随着转子回转,由吸气端向排气端作螺旋运动。因此,螺杆式制冷压缩机的吸、排气孔口都是呈对角线方式布置的。2.3螺杆压缩机的润滑系统2.3.1润滑油的作用 1)在螺杆与压缩室以及阴阳螺杆间形成动态密封, 减少制冷剂在压缩过程中由高压侧向低压侧的泄漏。 2)冷却被压缩的制冷剂, 油被喷入压缩机内, 吸收制冷剂气体在压缩过程中产生的热量, 降低排气温度。 3)在轴承以及螺杆间形成油膜用以支撑转子, 并起润滑作用。 4)传递压差力量
31、, 驱动容量调节系统, 经由压缩机的加卸载电磁阀的动作, 调节容调滑块的位置, 实现压缩机容量调节控制。 5)降低运转噪音 2.3.2润滑油常见问题压缩机内部润滑油系维系压缩机正常运转之关键,一般润滑油的问题有:1)异物混入,致润滑油污染,阻塞机油过滤器。2)高温效应致润滑油劣化,失去润滑功能。3)系统水分污染、酸化、侵蚀电机。 2.3.3油分离器螺杆压缩机组的油分离器主要有立式和卧式两种,并且以填料式为主。我公司目前普遍采用卧式二级油分、三种分油方式,分油效率高,可达10PPm。油分离器并且也是压缩机、电机的基础,使机组结构紧凑。油分内部分隔成三个腔,靠压缩机一侧桶体是保持油位的,其外部壳体
32、上有两个上下布置的视油镜,是监视油位高度(自动机组有油位控制器)。靠电机一侧的桶体是安装二次油分高效分油滤芯的,其外侧也有一个视油镜,根据油位判断是否采取回油措施。2.3.4油冷却器油分分离出来的润滑油因为吸收摩擦热及气体的热量而使温度升高(接近排气温度)。润滑油正常使用温度是3060,油温过高粘度降低,会使密封作用减弱,内泄漏增加,降低压缩机的效率,所以润滑油必须经过冷却才能循环使用。油冷却器就是起冷却油的作用。一般油冷却器采用水冷却方式。油走壳程,水走管程,清洗水路方便。优点是系统简单,油温可以降低至比较低的温度(根据水温而定);缺点是水侧管路易腐蚀。工质冷却。油走管程,工质走壳程。优点是
33、油冷不易腐蚀,操作维护简单;节省一套水路系统,适用于水质差或供水困难的场合;油温比较稳定。缺点是油温的最低温度受冷凝温度控制,系统需增加辅助贮液器或氨泵。辅助贮液器出液口与油冷却器之间至少要有1米以上的高度差。2.3.5粗油过滤器为保护油泵的正常工作,在润滑油进入油泵之前通过粗油过滤器滤去杂质。过滤器由壳体和金属滤网组成,壳体上设有加油阀,初次加油都是通过此阀。加油可以通过系统抽真空加油,也可以通过油泵加油。对于初次运转的机器,初运转后要检查粗油过滤器的清洁度,并根据系统清洁度定期拆检过滤网。可使用汽油或煤油清洗过滤网,并用干燥空气吹干净后继续使用。2.3.6精油过滤器精油过滤器也是由壳体和过
34、滤网组成,装配在油泵之后、油分配器之前,过滤油中的细小颗粒,保护压缩机转子及轴封。为了能滤去细微的金属磨屑,在过滤网内装有永磁铁。精油过滤器的过滤网比较细密,容易受到污染而使阻力增大。当油流经精油过滤器的压力降超过0.050.1Mpa时,就要对精滤器进行清洗或更换。机组设有精滤器前后压差保护,设定值为0.1Mpa。2.3.7油泵油泵在压缩机组中的作用是增加油压。常采用齿轮泵或转子泵。开机前要先检查油泵旋转方向。油泵齿轮或转子磨损严重会导致油压不足,必须检修或更换;油泵轴封漏油也必须检修或更换。2.3.8油压调节阀油压调节阀的作用是调节压缩机的喷油压力。如果进入压缩机的油压过高,会使喷油量过大,
35、既影响压缩机的吸气量,又增加压缩机的耗功,还会增加轴封漏油的可能性;油压过低,会使喷油量过小,使润滑油的作用减弱。一般要求精油过滤器后的油压即喷油压力要比排气压力高0.150.3Mpa(可调内容积比压缩机除外)。油压调节阀位一般于油泵进、出油管之间,一般是弹簧式的。当油泵出口压力高于油压调节阀设定值时,自动顶开调节阀的阀头,使一部分油流回进油管或油分,使油压降低。通常在刚开油泵或油温比较低时,油压会比较高,达到040.6MPa,此时不须要调整油压调节阀的设定值。机器运转正常后,根据需要将油压调整到合适值。2.3.9止回阀止回阀又称止逆阀或单向阀。因为螺杆压缩机没有例似于活塞压缩机中的吸、排气阀
36、片可以自动隔开高低压气腔,当压缩机突然停机而又没有来得及关闭吸排气截止阀,制冷剂气体就会从高压侧流向低压侧,同时压缩机转子也会在气流的作用下出现倒转现象。螺杆压缩机倒转会产生很多恶劣的影响:转子会产生严重的磨损;低压侧(蒸发器)压力升高,温度上升;压缩机中的润滑油会随气流大量流向低压侧,会使机组油量不足,影响蒸发器换热,或再次开机出现液击现象。螺杆压缩机在吸气截止阀与机体吸气口之间、油分出口与排气截止阀之间设有吸气单向阀和排气单向阀,用以防止制冷剂气体反方向流动。不能把单向阀作为截止阀使用。吸、排气止回气阀安装时应注意方向,不可倒置。 在机体吸气口和油分之间还设有一个电磁阀(俗称B阀),人为停
37、机时,电磁阀打开,使压缩机吸、排气口压力迅速平衡,减轻压缩机在停机时倒转。2.4螺杆压缩机常见故障2.4.1压缩机在运转中突然停机造成压缩机在运转中突然停机的原因有:1)吸气压力过低,低于压力继电器的低压下限值;2)排气压力过高,引起高压继电器动作断电;3)油压过低,油压继电器动作继电;4)电动机过载,热继电器动作继电;2.4.2排气压缩过高排气压缩过高的原因有:1)水冷冷凝器冷却水量不足或风冷冷凝器的冷却风量不足;2)冷凝器管簇表面水垢过厚或油污太厚,造成散热困难;3)制冷系统内有空气;4)制冷剂灌注过多;5)排气管道中阀门发生故障,造成压力过高;3.活塞式压缩机与螺杆式压缩机性能3.1活塞
38、式压缩机实际输气量与能量调节3.1.1活塞缩机实际工作过程1)压缩机中的压力降 2)制冷剂的受热 3)气阀运动规律不完善带来的效率下降。4)制冷剂泄漏的影响。5)再膨胀的影响 6)压缩过程偏离等熵过程 7)压缩过程的过压缩和欠压缩。8)润滑油循环量的影响。9)压缩机的机械摩擦损失和内置电动机(封闭式压缩机)的电动机损失。内容积比固定的压缩机的附加功损失在那些具有固定内容积比的容积型压缩机中,在工作中会发生过压缩和欠压缩的压缩过程。3.1.2内容积比V是指这类压缩机吸汽终了的最大容积V1与压缩终了的容积V2的比值,即内压力比 工作容积内压缩终了压力P2与吸汽压力P1的比值,称为内压力比 附加功损
39、失内压力比与外压力比不相等时,会产生附加功损失。讨论三种情况:PdP2 Pd = P2。 PdP2 。如图2-2由此,当压缩机内压缩终了压力与排汽管内气体的压力不相等,即内压力比与外压力比不等时,将产生附加功损失,从而降低压缩机的指示效率。所以,应力求压缩机的实际运行工况与设计工况相等或接近,以使压缩机获得运行的高效率。图2-2制冷压缩机的基本性能参数3.1.3实际输气量在一定工况下,单位时间内由吸气端输送到排气端的气体质量称为在该工况下的压缩机质量输气量qma,单位为kg/h。 3.1.4输汽系数 压缩机的实际输汽量与理论输汽量之比称为输汽系数。 它用于衡量容积型压缩机气缸工作容积的有效利用
40、程度。制冷量所谓压缩机的制冷量,就是压缩机在一定的运行工况下,在单位时间内被它抽吸和压缩输送的制冷工质在蒸发制冷过程中从低温热源(被冷却的物体)中所吸取的热量。在给定工况下压缩机的制冷量Q0可用下式计算。即: Q0 = qmaq 0 = qvtqv kW 输汽系数及其影响因素由于余隙容积,吸汽和排汽压力损失,汽体与汽缸壁之间的热量交换以及泄漏等因素的影响。压缩机的实际输汽量总是小于它的理论排汽量。压缩机的实际输汽量qVa与理论输汽量qV t的比值,称为压缩机的输汽系数,即输汽系数综合了影响压缩机实际排汽量的各种因素,是评价压缩机性能的一个重要指标,输汽系数越小,表示压缩机的实际排汽量与理论排汽
41、量相差越大。显然,压缩机的输汽系数值总是小于1的。输汽系数可以写成容积系数v、压力系数p、温度系数t和泄漏系数l 乘积形式,即: 容积系数V、它反映了压缩机中余隙容积的存在对压缩机输气量的影响。由理论分析和推导可知,容积系数V、可由下式进行计算: pC对V的影响较小,可以略去不计,则式可以简化为压力系数它反映了吸气压力损失对压缩机输气量的影响。经推导和分析可知,可用下式表示: 温度系数 T它反映在吸气过程中,因气体的预热对输气量的影响。吸入气体与壁面的热交换是一个复杂的过程,与制冷剂的种类、压缩比、气缸尺寸、压缩机转速、气缸冷却情况等因素有关。T的数值通常用经验公式计算。对于开启式压缩机为 对于封闭式制冷压缩机为 泄漏系数 它反映压缩机工作过程中由于泄漏而引起的对输气量的影响。泄漏是的大小与压缩机的制造质量、磨损程度、气阀设计、压力差大小等因素有关。对于高速多缸压缩机的输气系数,可由上述四个系数的乘积求出,也可由试验结果整理出来的经验公式求出。例如日本的木村亥之助推荐的经验公式(简称木村公式)如下当转速大于720r/min,c = 3% 4%时 3.1.3活塞式压缩机的能量调节方法压缩机制冷量的大小与运转情况有关。当外界条件或被