欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    交通信号智能控制系统外文文献及翻译.doc

    • 资源ID:826862       资源大小:81.35KB        全文页数:15页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    交通信号智能控制系统外文文献及翻译.doc

    1、Agent controlled traffic lightsAuthor:Danko A. Roozemond,Jan L.H. Rogier Provenance:Delft University of TechnologyIntroductionThe quality of (urban) traffic control systems is determined by the match between the control schema and the actual traffic patterns. If traffic patterns change, what they us

    2、ually do, the effectiveness is determined by the way in which the system adapts to these changes. When this ability to adapt becomes an integral part of the traffic control unit it can react better to changes in traffic conditions. Adjusting a traffic control unit is a costly and timely affair if it

    3、 involves human attention. The hypothesis is that it might offer additional benefit using self-evaluating and self-adjusting traffic control systems. There is already a market for an urban traffic control system that is able to react if the environment changes;the so called adaptive systems. Real ad

    4、aptive systems will need pro-active calculated traffic information and cycle plans- based on these calculated traffic conditions- to be updated frequently.Our research of the usability of agent technology within traffic control can be split into two parts. First there is a theoretical part integrati

    5、ng agent technology and traffic control. The final stage of this research focuses on practical issues like implementation and performance. Here we present the concepts of agent technology applied to dynamic traffic control. Currently we are designing a layered model of an agent based urban traffic c

    6、ontrol system. We will elaborate on that in the last chapters.Adaptive urban traffic control Adaptive signal control systems must have a capability to optimise the traffic flow by adjusting the traffic signals based on current traffic. All used traffic signal control methods are based on feed-back a

    7、lgorithms using traffic demand data -varying from years to a couple of minutes - in the past. Current adaptive systems often operate on the basis of adaptive green phases and flexible co-ordination in (sub)networks based on measured traffic conditions (e.g., UTOPIA-spot,SCOOT). These methods are sti

    8、ll not optimal where traffic demand changes rapidly within a short time interval. The basic premise is that existing signal plan generation tools make rational decisions about signal plans under varying conditions; but almost none of the current available tools behave pro-actively or have meta-rules

    9、 that may change behaviour of the controller incorporated into the system. The next logical step for traffic control is the inclusion of these meta-rules and pro active and goal-oriented behaviour. The key aspects of improved control, for which contributions from artificial intelligence and artifici

    10、al intelligent agents can be expected, include the capability of dealing with conflicting objectives; the capability of making pro-active decisions on the basis of temporal analysis; the ability of managing, learning, self adjusting and responding to non-recurrent and unexpected events (Ambrosino et

    11、 al., 1994).What are intelligent agents Agent technology is a new concept within the artificial intelligence (AI). The agent paradigm in AI is based upon the notion of reactive, autonomous, internally-motivated entities that inhabit dynamic, not necessarily fully predictable environments (Weiss, 199

    12、9). Autonomy is the ability to function as an independent unit over an extended period of time, performing a variety of actions necessary to achieve pre-designated objectives while responding to stimuli produced by integrally contained sensors (Ziegler, 1990). Multi-Agent Systems can be characterise

    13、d by the interaction of many agents trying to solve a variety of problems in a co-operative fashion. Besides AI, intelligent agents should have some additional attributes to solve problems by itself in real-time; understand information; have goals and intentions; draw distinctions between situations

    14、; generalise; synthesise new concepts and / or ideas; model the world they operate in and plan and predict consequences of actions and evaluate alternatives. The problem solving component of an intelligent agent can be a rule-based system but can also be a neural network or a fuzzy expert system. It

    15、 may be obvious that finding a feasible solution is a necessity for an agent. Often local optima in decentralised systems, are not the global optimum. This problem is not easily solved. The solution has to be found by tailoring the interaction mechanism or to have a supervising agent co-ordinating t

    16、he optimisation process of the other agents.Intelligent agents in UTC,a helpful paradigmAgent technology is applicable in different fields within UTC. The ones most important mentioning are: information agents, agents for traffic simulation and traffic control. Currently, most applications of intell

    17、igent agents are information agents. They collect information via a network. With special designed agents user specific information can be provided. In urban traffic these intelligent agents are useable in delivering information about weather, traffic jams, public transport, route closures, best rou

    18、tes, etc. to the user via a Personal Travel Assistant. Agent technology can also be used for aggregating data for further distribution. Agents and multi agent systems are capable of simulating complex systems for traffic simulation. These systems often use one agent for every traffic participant (in

    19、 a similar way as object oriented programs often use objects). The application of agents in (Urban) Traffic Control is the one that has our prime interest. Here we ultimately want to use agents for pro-active traffic light control with on-line optimisation. Signal plans then will be determined based

    20、 on predicted and measured detector data and will be tuned with adjoining agents. The most promising aspects of agent technology, the flexibility and pro-active behaviour, give UTC the possibility of better anticipation of traffic. Current UTC is not that flexible, it is unable to adjust itself if s

    21、ituations change and cant handle un-programmed situations. Agent technology can also be implemented on several different control layers. This gives the advantage of being close to current UTC while leaving considerable freedom at the lower (intersection) level.Designing agent based urban traffic con

    22、trol systemsThe ideal system that we strive for is a traffic control system that is based on actuated traffic controllers and is able to pro actively handle traffic situations and handling the different, sometimes conflicting, aims of traffic controllers. The proposed use of the concept of agents in

    23、 this research is experimental.Assumptions and considerations on agent based urban traffic controlThere are three aspects where agent based traffic control and -management can improve current state of the art UTC systems:- Adaptability. Intelligent agents are able to adapt its behaviour and can lear

    24、n from earlier situations.- Communication. Communication makes it possible for agents to co-operate and tune signal plans.- Pro-active behaviour. Due to the pro active behaviour traffic control systems are able to plan ahead.To be acceptable as replacement unit for current traffic control units, the

    25、 system should perform the same or better than current systems. The agent based UTC will require on-line and pro-active reaction on changing traffic patterns. An agent based UTC should be demand responsive as well as adaptive during all stages and times. New methods for traffic control and traffic p

    26、rediction should be developed as current ones do not suffice and cannot be used in agent technology. The adaptability can also be divided in several different time scales where the system may need to handle in a different way (Rogier, 1999):- gradual changes due to changing traffic volumes over a lo

    27、nger period of time,- abrupt changes due to changing traffic volumes over a longer period of time,- abrupt, temporal, changes due to changing traffic volumes over a short period of time,- abrupt, temporal, changes due to prioritised traffic over a short period of timeOne way of handling the balance

    28、between performance and complexity is the use of a hierarchical system layout. We propose a hierarchy of agents where every agent is responsible for its own optimal solution, but may not only be influenced by adjoining agents but also via higher level agents. These agents have the task of solving co

    29、nflicts between lower level agents that they cant solve. This represents current traffic control implementations and ideas. One final aspect to be mentioned is the robustness of agent based systems (if all communication fails the agent runs on, if the agent fails a fixed program can be executed.To b

    30、e able to keep our first urban traffic control model as simple as possible we have made the following assumptions: we limit ourselves to inner city traffic control (road segments, intersections, corridors), we handle only controlled intersections with detectors (intensity and speed) at all road segm

    31、ents, we only handle cars and we use simple rule bases for knowledge representation.Types of agents in urban intersection control As we divide the system in several, recognisable, parts we define the following 4 types of agents:- Roads are represented by special road segment agents (RSA),- Controlle

    32、d intersections are represented by intersection agents (ITSA),- For specific, defined, areas there is an area agent (higher level),- For specific routes there can be route agents, that spans several adjoining road segments (higher level).We have not chosen for one agent per signal. This may result i

    33、n a more simple solution but available traffic control programs do not fit in that kind of agent. We deliberately choose a more complex agent to be able to use standard traffic control design algorithms and programs. The idea still is the optimisation on a local level (intersection), but with local

    34、and global control. Therefor we use area agents and route agents. All communication takes place between neighbouring agents and upper and lower level ones.Design of our agent based systemThe essence of a, demand responsive and pro-active agent based UTC consists of several ITSAs (InTerSection Agent)

    35、.,some authority agents (area and route agents) and optional Road Segment Agents (RSA). The ITSA makes decisions on how to control its intersection based on its goals, capability, knowledge, perception and data. When necessary an agent can request for additional information or receive other goals or

    36、 orders from its authority agent(s).For a specific ITSA, implemented to serve as an urban traffic control agent, the following actions are incorporated (Roozemond, 1998):- data collection / distribution (via RSA - information on the current state of traffic; from / to other ITSAs - on other adjoinin

    37、g signalised intersections);- analysis (with an accurate model of the surrounds and knowing the traffic and traffic control rules define current trend; detect current traffic problems);- calculation (calculate the next, optimal, cycle mathematically correct);- decision making (with other agent decid

    38、ing what to use for next cycle; handle current traffic problems);- control (operate the signals according to cycle plan).In figure 1 a more specific example of a simplified, agent based, UTC system is given. Here we have a route agent controlling several intersection agents, which in turn manage the

    39、ir intersection controls helped by RSAs. The ITSA is the agent that controls and operates one specific intersection of which it is completely informed. All ITSAs have direct communication with neighbouring ITSAs, RSAs and all its traffic lights. Here we use the agent technology to implement a distri

    40、buted planning algorithm. The route agents tasks are controlling, co-ordinating and leading the ITSAs towards a more global optimum. Using all available information the ITSA (re)calculates the next, most optimal, states and control strategy and operates the traffic signals accordingly. The ITSA can

    41、directly influence the control strategy of their intersection(s) and is able to get insight into on-coming trafficThe internals of the ITSA modelTraffic dependent intersection control normally works in a fast loop. The detector data is fed into the control algorithm. Based upon predetermined rules a

    42、 control strategy is chosen and the signals are operated accordingly. In this research we suggest the introduction of an extra, slow, loop where rules and parameters of a prediction- model can be changed by a higher order meta-model.ITSA modelThe internals of an ITSA consists of several agents. For

    43、a better overview of the internal ITSA model-agents and agent based functions see figure 2. Data collection is partly placed at the RSAs and partly placed in the ITSAs. The needed data is collected from different sources, but mainly via detectors. The data is stored locally and may be transmitted to

    44、 other agents. The actual operation of the traffic signals is left to an ITSA-controller agent. The central part of the ITSA, acts as a control strategy agent. That agent can operate several control strategies, such as anti-blocking and public transport priority strategies. The control strategy agen

    45、t uses the estimates of the prediction model agent which estimates the states in the near future. The ITSA-prediction model agent estimates the states in the near future. The prediction model agent gets its data related to intersection and road segments - as an agent that knows the forecasting equat

    46、ions, actual traffic conditions and constraints - and future traffic situations can be calculated by way of an inference engine and its knowledge and data base. On-line optimisation only works if there is sufficient quality in traffic predictions, a good choice is made regarding the performance indi

    47、cators and an effective way is found to handle one-time occurrences (Rogier, 1999).Prediction modelWe hope to include pro-activeness via specific prediction model agents with a task of predicting future traffic conditions. The prediction models are extremely important for the development of pro acti

    48、ve traffic control. The proposed ITSA-prediction model agent estimates the states of the traffic in the near future via its own prediction model. The prediction meta-model compares the accuracy of the predictions with current traffic and will adjust the prediction parameters if the predictions were

    49、insufficient or not accurate. The prediction model agent is fed by several inputs: vehicle detection system, relevant road conditions, control strategies, important data on this intersection and its traffic condition, communication with ITSAs of nearby intersections and higher level agents. The agent itself has a rule-base, forecasting equations, knows constraints regarding specific intersections and gets insight into current (traffic) conditions. With these data future traffic


    注意事项

    本文(交通信号智能控制系统外文文献及翻译.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922