1、 引 言31 绪 论41.1 课题背景41.2 一氧化碳报警器的概述51.3 课题研究的目的及意义51.4 系统设计主要任务62 方案设计62.1 设计要求62.2 初始方案72.2.1系统方案的选择82.2.2系统方案的确定102.3 系统组成102.3.1一氧化碳报警器系统的三大部分112.3.2系统各个模块功能说明122.3.3系统功能扩展133 硬件电路设计133.1 设计使用的基本知识介绍133.2 芯片介绍4及相关电路模块设计143.2.1主控电路原理143.2.2电源电路183.2.3传感器的选择及电路203.2.4事故处理电路的设计233.2.5显示电路的设计253.2.6 计
2、算机串口通信的技术与其标准283.3设计的硬件电路344 软件部分354.1 单片机编程354.1.1软件部分设计的功能354.1.2程序框图和主要程序介绍364.2 上位机(PC机)编程384.2.1 VB下串行通信的方法384.2.2串行通信的控件MSComm及其使用方法385 系统制作及调试405.1系统PCB板的设计405.1.1确定PCB的大小405.1.2布局405.1.3布线405.2 硬件调试415.2.1检测元器件415.2.2检测各个引脚信号415.3 软件调试416 结论42谢 辞43参考文献44附录145附录252附录355附录456附录557引 言 当今,单片微型计算
3、机技术迅猛发展,由单片机技术开发的智能化测控设备和产品广泛应用到各个领域,单片机技术产品和设备促进了生产技术水平的提高。而此次的气体浓度检测系统正是单片机应用系统中的一种。单片机应用系统由硬件和软件组成。硬件是指单片机扩展的存储器、输入/出设备以及各种实现单片机系统控制要求的接口电路和有关的外围电路芯片或部件;软件是指单片机应用系统实现其特定控制功能的各种工作程序和管理程序。只有系统硬件和软件紧密配合、协调一致,才可能组成高性能的单片机应用系统。在单片机应用系统开发的过程中,应不断调整软、硬件,协调地进行软、硬件设计,以提高工作效率。单片机应用系统的开发过程一般包括系统的总体设计、硬件设计、软
4、件设计和系统调试几个阶段。这几个系统开发阶段并不是相互独立、各自进行的,而应根据开发的实际需要,相互协调、交叉,有机的进行。实现气体浓度检测离不开高性能的气体传感器。从广义上讲,传感器就是能感受外界信息并能按一定规律将这些信息转换成可用信号的装置。狭义上讲,传感器就是能将外界信息转换成电信号的装置。随着新技术和自动化的发展,传感器的使用数量越来越大,一切现代化仪器、设备几乎都离不开传感器2。在工业生产中,尤其是自动化生产过程中,用各种传感器来检测和控制生产过程中的各个参数,如温度、压力、流量、PH值等,以便使设备工作在最佳状态,产品达到最好的质量。此次设计中所利用到的气体传感器就是要测量一氧化
5、碳气体浓度的动态信号,并且利用数模转换芯片将浓度值转换为数字值,实现整个系统的检测与事故处理功能,实现智能控制。本文的一氧化碳报警器就是单片机应用系统的一种典型应用,要求能够检测一氧化碳气体浓度,并且在气体浓度超过给定值时能采取相关措施。由于一氧化碳中毒是家庭小区以及矿工企业常见事故,给人们生命财产安全带来了极大的危害。为了能减少事故的发生,提醒人们注意,迫切需要一氧化碳报警设备。随着电子技术与计算机技术的发展,面对各种检测对象和大量的测试点,需要利用数据采集系统将多路被测量值转换成数字量,再经过单片机或微型计算机进行数据处理,实现实时测控。而此时采用单片机来实现一氧化碳报警不仅具有采集控制方
6、便、简单、灵活等优点,而且可以大幅度提高采集点的技术指标,从而大大提高系统的可利用性。此次三路巡回检测系统正是把ADC0809与8051单片机有机的结合起来,实现了三通道数据采集系统,也符合了本设计的要求。本人在此次设计中主要担任了系统的硬件电路图的设计、硬件的焊接和调试、软件的设计、以及各个芯片资料查找与整理等工作。设计中超出了任务书所给的任务,提出了本一氧化碳报警器在网络中的应用方案。1 绪 论1.1 课题背景随着国家经济的提高,现代化、智能化的多功能建筑越来越多,对建筑的防火安全设计要求也愈来愈高。近年来,全国燃气行业发展迅猛,液化气、天然气、煤制气等城市燃气作为清洁能源已在工商业和城镇
7、居民用户中得到广泛应用,特别是随着“西气东输”工程的快速进展,燃气行业发展潜力巨大。以“西气东输”工程为开端的大规模天然气利用工程的实施,意味我国城市燃气将大踏步地进入“天然气时代”。我国天然气市场将迎来一个千载难逢的机会,城市燃气需求的主要增长点将体现在天然气上。2000年党中央国务院提出“西部大开发”的重大战略部署,特别是2002年“西气东输”第一期工程正式开工,这无疑为发展西部地区的燃气产业带来历史性的机遇。西气东输工程,在西部优势资源和东部广阔市场之间架起了一座“金桥”,西气东输工程投入使用后,每年供应长三角地区100亿立方米天然气。城市燃气的普及与应用无疑对改善城市的环境质量和提高居
8、民的生活质量发挥了巨大的作用。但是随着燃气的广泛应用,由于燃气泄漏所引发的爆炸、中毒和火灾事故也时有发生,这在某种程度上增加了城市的不安全和不稳定因素。为了使燃气更好地造福于民,造福于社会,减少并杜绝各种因燃气泄漏而引发的爆炸及火灾事故,各燃气使用单位及居民用户选择一种适合的燃气报警器实为必要之举。“报警早,损失少”,进一步说明了及时报警的重要性,在家庭里面也是如此,一旦发生火灾,提早报警,可以及时将火扑灭,以免小火酿成大灾。目前常用的有感烟、感温和可燃气体火灾报警器。像家庭中在使用煤气、液化石油气和天然气等燃料时,安装一个可燃气体报警器,当出现漏气或着火时,报警器能够立即鸣笛报警,告之主人及
9、时采取措施。日本早在1980年1月开始实行安装城市煤气、液化石油气报警器的法规,1986年5月日本通产省又实施了安全器具普及促进基本方针。美国目前已有7个州11个城市通过立法,规定家庭、公寓等都要安装一氧化碳报警器。随着城市燃气化的扩大,我国已有北京市、辽宁省、黑龙江省、山西省、哈尔滨市、青岛市、大连等省市相继发布燃气安全管理文件,做到政府立法和百姓自身提高安全保护意识有机结合。一氧化碳(CO)为无色、无味、无臭、无刺激气体,比重0.967,几乎不溶于水,不易被活性炭吸附。当碳物质燃烧不完全时,可产生CO,如人体短时间内吸入较高浓度的CO,或浓度虽低,但吸时间较长,均可造成急性中毒。CO主要来
10、自取暖燃料的燃烧,CO对人体的损害主要表现在损害血液输送氧气的能力,CO与血红蛋白结合能力超过氧和血红蛋白的结合能力的200-300倍,当CO与血红蛋白结合形成的碳氧血红蛋白含量达到5%时,就会对人体产生慢性损害,达到60%时就会昏迷,达到90%就会死亡15。由于发生一氧化碳中毒事件的普遍性和隐蔽性,迫切需要一种能够很好的监控室内一氧化碳浓度的仪器,并且在一氧化碳浓度过高时能够采取相关措施防止火灾的发生,保护人们的生命财产安全。 本文正是通过分析目前燃气报警器的现状,设计制作一氧化碳报警器,保障人们的生命财产安全。1.2 一氧化碳报警器的概述 首先我们应对国家标准规定的燃气报警器的种类有所了解
11、。燃气报警器可分为可燃气体检漏仪(简称“检漏仪”),可燃气体报警控制器(简称“控制器”)、可燃气体探测器(简称“探测器”)、家用可燃气体报警器(简称“报警器”)四大系列产品。报警器为居民家庭用的燃气报警器,一般安装在厨房,遇燃气泄漏时,报警器可发出声光报警,或同时伴有数字显示,同时联动外部设备。有的报警器可自动开启排风扇,把燃气排出室外。有的报警器在报警时可自动关闭燃气阀门,以防燃气继续泄漏。 燃气报警器的核心是气体传感器,俗称“电子鼻”。当气体传感器遇到燃气时,传感器电阻随燃气浓度而变化,随之产生电信号,供燃气报警器后级线路处理。经过电子线路处理变成浓度成比例变化的电压信号,由线性电路加以补
12、偿,使信号线性化,经微机处理、逻辑分析,输出各种控制信号,即当燃气浓度达到报警设定值时,燃气报警器发出声光报警信号并可显示燃气浓度或启动外部联运设备(如排风扇、电磁阀)。选择一款优质的燃气报警器,首先要选择质量过关的传感器。质量不过关的传感器,一般16个月性能就下降,因而失去报警器的安全性,出现不报警或误报警现象,而一种好的传感器可连续使用十几年,特性也不会有什么变化。但是,报警器中的其它电子元件的寿命都是有限,先进国家也规定燃气报警器的有效期最多为五年。报警器都存在着检测误差,只要当着误差降低在5%以内这个报警器才符合使用要求。这就要求了一氧化碳传感器性能必须符合这个条件,高精度的传感器是系
13、统的灵魂。气体传感器受湿度、温度的影响较大,在条件需要的时候应该采用温度、湿度补偿来提高测量精度。1.3 课题研究的目的及意义设计出性能更加可靠,经济实惠的程控一氧化碳报警器。目前,现有一氧化碳检测仪器主要是面对工矿企业或公共场所的检测,价格高昂,对家庭也是不适应的。因此,本次设计所面对的是广大居民,其优点在于:(1)成本低廉并能对一氧化碳准确报警。(2)该产品无需专业人员操作,只要放在合适位置,通电即可,连续使用、方便简捷。(3)能起到预防一氧化碳中毒的效果,使人们高枕无忧。该产品必须能够有效预防广大农村居民的冬季燃煤取暖一氧化碳中毒事件的发生,同时也能够给城镇居民安全使用天然气提供有力的保
14、障。1.4 系统设计主要任务 本文利用单片机电路制作程控一氧化碳报警器。设计过程中最关键的两个部分:系统硬件的设计和控制软件的编写。这也是在设计过程中需要解决的最关键的问题。(1)硬件问题程控一氧化碳报警器的硬件主要有3大部分,即浓度检测及显示模块、主控模块和报警及事故处理模块。浓度检测模块主要由燃气传感器组成,它是整个系统中最关键的元件。主控模块由单片机及其相关软件组成,由程序对单片机进行控制。事故处理模块主要由蜂鸣器和排气扇等组成,这个模块是对燃气浓度过高的时候进行紧急处理。硬件的设计需要单片机、模电及其数电的相关知识。在解决这一问题的过程中,需要查阅大量资料,结合所学知识,向老师获取帮助
15、。(2)软件问题它的软件设计主要包括主程序和中断处理两大部分:主程序要完成IO口,定时器的初始化及对中断输入的设定,然后延时使传感器进入稳定工作状态,等待定时器的中断;中断处理程序根据具体情况需要有相应的子程序。要对程序进行多次调试,分块编程。对各个子程序块所解决的问题要相当明确。最后在制作完成硬件电路板后要调试出设计要求的功能。2 方案设计设计就是根据题目的要求而对硬件和软件进行规划,并选择最合适的硬件电路和软件程序来达到目的。硬件设计是通过对设计要求的分析,对各种元器件的了解,而得出分立元件与集成块的某些连接方法,以达到设计的功能要求。并且把这些元器件焊接在一块电路板上。它包括对各种元器件
16、的功能和接法的了解,以及对各种元器件的选择和设计方案的选择。软件设计是分析设计的硬件用程序实现其功能,并且调试优化产品功能。2.1 设计要求设计的报警器应实现如下功能:报警器需在一氧化碳浓度达到100ppm 时系统应启动报警,2min 报警无效后系统应启动排风扇进行通风排气、关闭电磁阀切断气源;系统进入正常工作状态后,先启动排风扇进行通风,然后启动电磁阀供给煤气。具体要实现如下功能:(1)系统要求设置正常工作状态,除正常工作状态外,电磁阀要求处于关闭状态,以切断煤气通道,防止煤气外泄。(2)在非正常工作状态下,当室内一氧化碳的浓度达到100ppm 时系统应启动音乐报警,若2min 报警无效,系
17、统应启动排风扇进行通风排气、关闭电磁阀切断气源。(3)系统进入正常工作状态后,先启动排风扇进行通风,然后启动电磁阀供给煤气。2.2 初始方案本设计拟按以下思路展开研究:(1)根据该设计要实现的基本功能,设计大致应该分为信号接收,信号处理,信号控制和信号响应四个部分。信号采集接收部分即通过一氧化碳传感器检测房间气体浓度,并将这种变化量转化成电压或电流等模拟量的变化。信号处理部分是将接收部分得到的电压或电流等变化进行必要的放大,为后一部分信号控制提供准备。信号控制部分是通过一预定控制方式等实现对设计要求的准确操作。信号响应是通过事故处理部分和显示部分实现控制部分的要求。(2)对上述四个部分进行分析
18、,得到如下一些基本的结论:信号接收部分为了能准确采集到气体浓度的变化应选用传感器敏感器件,为使其实有效的检测房间中气体浓度,必须选用高温一氧化碳传感器。信号处理部分应该根据实际情况选用电荷放大,或比较器等装置,这部分电路将包含在传感器接口电路中。控制部分为了实现精确控制,采用单片机较为合适。信号响应可以考虑采用排风扇调节房间中一氧化碳气体浓度,并且需要对电磁阀进行控制,实现一氧化碳气体的排出量。在实现控制功能的单片机与响应过程的LED显示管之间应该有接口电路以实现驱动功能。根据对上面设计系统的分析,我们得到该设计思想框图如下图2.1所示:图2.1 设计思想框图将上述设计思想结合设计要求总结为:
19、程控一氧化碳报警器采用三路巡回检测的方法,通过高温一氧化碳气体传感器检测房间气体浓度,检测结果经过高精度运放器放大后送入ADC0809模/数芯片中进行模数转换;利用单片机进行控制,控制声音报警以及控制电磁阀和排风扇,并且将气体传感器检测到的浓度值在LED数码显示管上显示出来。2.2.1系统方案的选择鉴于此系统所要实现的功能,提出方案进行分析。方案一:采用单个传感器检测房间气体浓度,将检测的到浓度结果通过运算放大器放大后送入模/数芯片中进行模数转换,利用MCS51单片机控制声音报警以及控制电磁阀和排风扇,并且将气体传感器检测到的浓度值在LED数码显示管上显示出来。分析:此设计虽然简单,但是存在着
20、严重的问题。采用单个传感器检测房间气体浓度是不合适的。气体传感器所测量的值经常会发生变化。在一段短时间内可能很稳定,而在一段较长时间内则可能有缓慢起伏,或呈周期性的脉动变化,甚至出现突变的尖峰。气体传感器主要通过两个基本特性-静态特性和动态特性来反映传感器的这种变动性。静态特性通常反映在灵敏度上。所谓的灵敏度,是指在静态工作条件下,其单位输入所产生的输出,用S表示。(2-1)动态特性是气体传感器的特有问题,反映气体传感器对随时间变化的输入响应特性。动态特性好的气体传感器,其输出特性曲线随时间变化很小。动态特性的输入与输出关系不是一个常数,而是时间的函数,随时间的变化而变化,因此常用传递函数表征
21、。 (2-2)由此可见,气体传感器的输入和输出关系并非简单的线性或曲线关系,要对气体传感器建立一个准确的温度修正数学模型是很困难的。通常应用时,都忽略气体传感器的动态特性,根据其静态温度响应灵敏度,采取一定的措施对其进行补偿。如通过温度传感器测出环境的温度,对气体传感器的输出特性曲线进行修正;或者直接对传感器进行硬件补偿。气体传感器特性总是会受到环境温度、湿度的影响而变化,气体报警器要能够有效实现对环境气氛的监控,有效避免误报、漏报,提高测量的准确性,必须对气体传感器进行有效的温、湿度补偿和修正。由于本次课题要求检测一氧化碳浓度超过100ppm时报警提示,而气体传感器在测量气体浓度大于60pp
22、m时,环境湿度的变化对一氧化碳传感器特性的影响较小,故忽略对传感器湿度修正。那么主要考虑如何有效实现传感器的温度补偿。传统补偿方式一般有硬件补偿和软件补偿两种。所谓硬件补偿是指直接使用温度传感器在电路中对气体传感器进行补偿,这种方式虽然简单,但只有在温度传感器和气体传感器的温度特性一致时,才能很好地补偿;很难实现宽范围的气体传感器和温度传感器的特性匹配。软件补偿方式通过传感器的温度特性曲线拟合进行算法补偿,这种方式是以一定的特性曲线作为基础,对不同的工作环境和不同传感器的温度特性,用算法处理和查表修正以得到不同的补偿效果。该方式较为复杂,对特性离散的传感器,拟合效果差。为了解决这个问题,提出采
23、用双传感器补偿方式,具体来说就是选用两个特性一致(实际上只能做到非常接近)的气体传感器来实现补偿,把其中一个气体传感器A密封代替温度传感器,对另一气体传感器B进行补偿。这样的补偿方式,不仅能较好地拟合气体传感器的静态温度特性,而且对传感器的动态温度响应也能同步实现补偿12。由于本设计方案传感器测量精度不高,所以不予采纳。方案二:采用双传感器,采用相互补偿的方法检测房间气体浓度,将检测的到浓度结果通过运算放大器放大后送入模/数芯片中进行模数转换,利用MCS51单片机控制声音报警以及控制电磁阀和排风扇,并且将气体传感器检测到的浓度值在LED数码显示管上显示出来。分析:此设计方法虽然解决了传感器检测
24、气体浓度时温度和湿度对测量值的影响,但是,在实际制作的过程中,需要利用的核心控制芯片必须最少具有4路8位A/D口,气体和温度敏感信号直接由A/D口采集后,进行一定的算法修正和软件补偿。由于此次课题要求采用三路巡回检测,如果采用本方案那么就需要6个特性相同的一氧化碳气体传感器(3个密封检测气体浓度,另外3个做补偿),为了达到更好的温度修正效果,往往需要传感器厂家的配合,在生产时对传感器进行成对生产,以保证传感器特性的一致性。并且主控制芯片采用常规的ADC0809和单片机并不支持,且制作硬件极其复杂,系统整体设计体积过大、功耗高、成本太高。单单采用此种方法并不能更好的提高测量性能,还需要加以软件补
25、偿。所以不采用方案二。现今传感器技术的飞速发展,设计出了性能更佳,使用范围更广的气体传感器。通过搜集信息,提出本次设计采用TP-2型高温一氧化碳传感器。特将此传感器介绍如下:(1) 特点:TP-2高温型一氧化碳传感器由SnO2多晶体及适当添加混合剂烧结而成。具有微珠式结构,电导振荡响应,极好的选择性和良好的环境适应能力,应用电路简单,本质安全等特点。用它做成的报警器完全可以达到UL2034标准,不需温、湿度补偿。(2) 工作条件:工作电压:3.5V6.5V静态功耗:15mW环境条件:温度-10+50,相对湿度95%初期稳定时间:15分钟检测一氧化碳浓度范围:02000ppm(3) 对一氧化碳反
26、应的敏感度: 图2.2 系列一氧化碳浓度的条件下RL电压的振荡曲线。(4) 高湿高温对传感器的影响:根据测试结果表明,此传感器可承受96%RH相对湿度、70的环境条件,但基电平升高。由于采用此方案制作硬件极其复杂,系统整体设计体积过大、功耗高、成本太高,所以不予采纳。方案三:采用TP-2型传感器,采用三路巡回检测的方法检测房间气体浓度,将检测的到浓度结果通过运算放大器放大后送入模/数芯片中进行模数转换,利用MCS51单片机控制声音报警以及控制电磁阀和排风扇,并且将气体传感器检测到的浓度值在LED数码显示管上显示出来。分析:选用此方法设计电路不仅解决了温度、湿度的影响,并且简化了设计电路,降低了
27、成本,采用此种方法设计主体电路。具体电路设计将在下文中给出。2.2.2系统方案的确定 现今一氧化碳传感器技术的不断提高,使得在应用此类传感器时不必采用温度、湿度补偿,极大的简化了电路和降低了成本。鉴于对以上三个方案的对比分析,方案三最符合设计要求,所以我选择使用方案三来设计本次毕业设计的主体电路。2.3 系统组成本设计属于单片机应用系统。它是单片机在系统检测以及工程控制方面的应用,是典型的嵌入式系统。通常将满足海量高速数值计算的计算机称为通用计算机系统;而把面向工控领域对象,嵌入到工控应用系统中,实现嵌入式应用的计算机称之为嵌入式计算机系统,简称嵌入式系统。嵌入式系统一般分为四种:工控机,通用
28、CPU模块,嵌入式微机处理,单片机。嵌入式系统具有以下特点:(1)面对控制对象。如传感信号输入、人机交互操作,伺服驱动等。(2)嵌入到工控应用系统中的结构形态。(3)能在工业现场环境中可靠运行的品质。 (4)突出控制功能。如对外部信息的捕捉、对控制对象实时控制和有突出控制功能的指令系统(I/O控制、位操作和转移指令等)。单片机有惟一的专门为嵌入式应用系统设计的体系结构与指令系统,最能满足嵌入式应用要求。单片机是完全按嵌入式系统要求设计的单芯片形态应用系统,能满足面对控制对象、应用系统的嵌入、现场的可靠运行及非凡的控制品质等要求,是发展最快、品种最多、数量最大的嵌入式系统。2.3.1一氧化碳报警
29、器系统的三大部分单片机应用系统的结构分三个层次。 (1)单片机:通常指应用系统主处理机,即所选择的单片机器件。(2)单片机系统:指按照单片机的技术要求和嵌入对象的资源要求而构成的基本系统,如时钟电路、复位电路和扩展存储器等与单片机构成了单片机系统。(3)单片机应用系统:指能满足嵌入对象要求的全部电路系统。在单片机系统的基础上加上面向对象的接口电路,如前向通道、后向通道、人机交互通道(键盘、显小器、打印机等)和串行通信口(RS232)以及应用程序等。单片机应用系统三个层次的关系如图2.3:图2.3 单片机应用系统三个层次的关系(注:该图应自己绘制,不要现成图片!)以此理解,程控一氧化碳报警器同样
30、具有单片机应用系统的三个层次。其中以MCS-8051单片机为核心构成单片机系统。在此系统中,检测信号进入单片机进行运算处理,控制外围电路。为了更好的理清设计思路,将整个系统细分为三部分加以设计说明。整个报警器由三个部分组成,分为三大模块:浓度检测及显示模块、主控模块和报警及事故处理模块。在本次设计中,使用的核心器件是单片机和一氧化碳传感器。为了保证整个系统可靠的运行,设计中必须明确三大部分的实际联系:以单片机为中心,其他各大模块一一展开。其中,浓度检测及显示模块所实现的功能是将房间中的一氧化碳浓度值转换成为单片机能够处理的数字信号,并且将浓度值显示出来;主控模块以单片机为主,对其他模块的运行进
31、行控制;报警及事故处理模块是此系统的外围电路,它的功能实现形式最人性化,体现了智能控制,在检测到一氧化碳浓度超过指定值时会启动蜂鸣器报警,报警无效后即会进行处理,启动排气扇和关闭电磁阀来防止事故的发生。系统框图如图2.3所示。 图2.3 一氧化碳报警器系统组成框图下面就对各个模块的功能和实现形式作简单介绍。2.3.2系统各个模块功能说明(1)气体浓度检测模块程控一氧化碳报警器采用三路巡回检测的方法,可以检测三个不同的房间也可以用来检测同一个房间三个不同的方位。检测器件采用高温一氧化碳气体传感器TP-2检测房间气体浓度,检测结果将经过高精度运放器放大后送入模/数芯片ADC0809中进行模数转换,
32、单个传感器的检测电路如图2.4所示。图2.4 单个传感器电路图(2)主控模块系统选用单片机控制,采用MCS51单片机。MCS51系列单片机是美国Intel公司1980年推出的一种高性能8位单片微型计算机。内带4K字节的内存和程序保护系统,便于程序的调试修改和保密,各管脚的功能将在随后的知识中加以介绍。它的主要功能既是和ADC0809芯片一起共同接收检测信号,又可以通过对数字信号的处理来控制外围电路以及显示电路。模数转换芯片采用ADC0809,接收经过运算放大器处理后的一氧化碳传感器的检测值,三路检测结果经过ADC0809处理后送单片机进行数据处理。处理后的信息将通过单片机控制,在LED显示管上
33、显示出来,并且控制事故处理模块。(3)报警及事故处理模块此模块主要由蜂鸣器、电磁阀和排气扇组成。在气体浓度过大,超过安全值时蜂鸣器工作,提供报警服务。这个时候,用户可以自行关闭煤气,并通过对房间通风来解决。如若5分钟内气体浓度依然超过安全值,系统自动启动排气扇来降低房间一氧化碳浓度,并且关闭电磁阀来防止煤气泄漏造成事故。至此,本系统三大模块功能和设计思路已经确立,下文将介绍整个系统的详细设计过程,并且给出设计电路。2.3.3系统功能扩展由于设计的一氧化碳报警器为单机产品,而现实中的应用多为小区型应用。所以,在设计中,我考虑到将此一氧化碳报警器添加网络技术,使其能够和主机相连,从主机中能够获得分
34、机所检测的信息。单片机在网络中的应用主要是应用了串口通信技术,这种技术是在智能型领域的综合应用,是值得发展的新技术。在下文中将详细介绍串口通信技术。3 硬件电路设计每一个设计都要以一定的知识为基础,知识的多少在一定程度上决定了设计出来的东西的好坏程度,这些知识包括硬件知识和软件知识。硬件知识用来设计硬件电路,以实现电路的放大、驱动、采集、隔离、匹配等功能。软件知识用来设计芯片处理数据的先后顺序,数据的获得途径以及对数据做怎样的处理,还有其他的一些驱动和显示功能等等。当然,在硬件电路里一些芯片是必不可少的,软件设计也需要对芯片进行编程序。本章将介绍本次设计用到的一些基本知识和主要芯片。3.1 设
35、计使用的基本知识介绍我们在学校里学到的几乎都属于基本知识,它是指最最基础的东西,我们只有掌握了它才能作更深一步的学习。在实际的应用中,基本知识的掌握程度至关重要,它影响到应用的好坏。本设计应用到的基本的硬件和软件知识将在本节里作简单的介绍。 本设计用到的硬件知识主要有:模拟电子技术、数字电子技术、电子线路的设计与调试、单片机的输入输出、串口通信技术、ADC0809模数转换器的使用方法。 在模拟电子技术方面,主要用来放大传感器检测信号和驱动发光二极管以显示传感器检测到气体浓度。数字电子技术用来把模拟量转换成数字量,把从传感器检测到的模拟量转换成数字值。利用单片机实现综合控制。3.2 芯片介绍4及
36、相关电路模块设计集成块出现使硬件电路设计更加简单易懂,从而得到了广泛的应用。在这次毕业设计中用到的主要芯片有单片机MCS8051、模数转换器ADC0809、LED数码显示器等。下面详细介绍它们具体的应用方法。3.2.1主控电路原理主控电路中,以单片机为主体,通过分析A/D转换得到的数字值,控制事故处理模块的运行。它是系统的大脑。单片机(MICROCONTROLLER,又称微控制器)是在一块硅片上集成了各种部件的微型机算计,这些部件包括中央处理器CPU、数据存贮器RAM、程序存贮器ROM、定时器/计数器和多种I/O接口电路。主机电路由8051作为程序存储器。8051的封装管脚如图3.1所示2。图
37、3.1 8051封装引脚图(注:该图应自己绘制,不要现成图片!)8051的主要的特点:1.采用高性能的HMOs生产工艺生产。 2.内部含定时计数器。 3.有二级中断优先处理结构。 4.有32条IO线,输出输入能力强。 5.程序寻址空间达64K字节。 6.内EPROM有保险功能,可保护EPROM防止软件误写入 7.有布尔处理功能,可扩展用途。 8.对内部RAM有位寻址功能。9.有可编程的全双工串行接口。8051的内部结构主要包括有ALU部件、定时和控制部件、并行IO接口、串行IO接口、定时器部件、程序存储器、数据存储器等七个部分。 ALU部件含有ALU单元以及累加器Acc、寄存器B、栈指针SP、
38、数据指针DPTR、程序状态字PSW、暂时寄存器TMP1、TMP2等。ALU除了可以进行四则算术运算之外,还可以进行布尔运算。定时和控制部件用于产生指令执行的同步信号及微操作信号。它和ALU部件形成了8051的CPU14。并行IO接口有P0、P1、P2和P3共四个,它们都是8位并行端口。它们都是双向通道,每一条I/O线都能独立地用作输入或输出。作输出时数据可以锁住;作输入时数据可以缓冲。但这四个通道的功能不完全相同。其中,P0 口是地址数据复合总线,它用于传送低8位地址A0A7;也用于传送数据D0D7。P2口是高8位地址A8A15的地址总线,但也可作一般的IO口。P1是一个纯IO口,它只用于数据
39、的输入输出。P3是控制信号及IO信号复用口,它除了用作1O口之外,还用于传送控制信号。P3口对应引脚用于控制信号时的情况如表3.1所示。表3.1 P3口的引脚功能 引脚信号控制信号说明P3.0RXD串行数据输入P3.1TXD串行数据输出P3.2INT0外部中断0P3.3INT1外部中断1P3.4T0定时器0输入P3.5T1定时器1输入P3.6WR写存储器信号P3.7RD读存储器信号 这个系列的技术性能如下:工作环境温度070,存储环境温度65C十1500。EAVpp端对Vss的电压为-05十215v,任何脚到Vss的电压为-05十7v,电源电压十5V土10,电源电流为125250mA,电源功耗
40、为1.5w。MCS-51单片机通常采用上电复位和按钮复位两种复位方式。上电复位是利用电容的充放电来实现。按钮复位又分为按钮电平复位和按钮脉冲复位。前者,将复位端通过电阻与VCC相接;后者,利用微分产生正脉冲来达到复位的目的。复位电路参数的选择,应能保证复位高电平持续时间大于两个机器周期3。在设计中,用到了单片机对输入口进行查询并输出相应的高低电平实现后续工作的控制功能,这将着重在软件设计部分讲到。下面介绍设计中如何使用ADC0809的功能。ADC芯片型号很多,在精度、速度和价格方面千差万别,较为常见的ADC主要是逐次比较型和双积分型。还有电压频率变换器(VF变换器)构成的ADC。双积分型ADC
41、,一般精度高,对周期变化的干扰信号积分为零,因而具有抗干扰性好、价格便宜等优点,但转换速度慢。逐次比较型ADC,在转换速度上同双积分型相比要快得多。精度较高(例如12位及12位以上的),价格较高。VF变换型ADC,突出优点是高精度,其分辨率可达16位以上,价格低廉,但转换速度不高。ADC的主要性能指标是:分辨率;转换时间;精度;输入电压范围;输入电阻(阻值);供电电源;数字输出特性;工作环境(周围的温度、湿度);保存环境等。要选择适当的ADC,要看其使用目的。在本次设计中,使用的是ADC0809。ADC0809是8位A/D转换芯片,它是采用逐次逼近的方法完成A/D转换的。 ADC 0809是C
42、MOS的8位单片A/D 转换器。片内有8路模拟开关,可控制选择8个模拟量中的一个。A/D转换采用逐次逼近原理。输出的数字信号有TTL三态缓冲器控制,故可直接连至数据总线。主要功能有:分辨率为8位总的不可调误差在1/2 LSB和1 LSB范围内。转换时间为100us。具有锁存控制的8路多路开关。输出有三态缓冲器控制。单一5V电源供电,此时模拟输入范围为05V。输出与TTL兼容。工作温度范围为4085。(1)ADC 0809功能方框图模拟输入部分有8路多路开关,可由三位地址输入ADDA、ADDB、ADDC的不同组合来选择(这三条地址输入信号可锁存)。主体是采用逐次逼近式的A/D转换电路,由CLK信
43、号控制内部电路的工作,由START信号控制转换开始。转换后的数字信号在内部锁存,通过三态缓冲器接至输出端。其引脚如图3.2所示。其中,START为启动命令,高电平有效。由它启动ADC 0809内部的A/D转换过程。当转换完成,输出信号(End of Convert)有效(低电平有效)。OE(Output Enable)为输出允许信号,高电平有效。当在此输入端供给一个有效信号时,打开输出三态缓冲器,把转换后的结果输至数据总线。图3.2 0809的引脚(2)ADC 0809时序当模拟量送至某一输入端后,由三位地址信号来选择,地址信号由地址锁存允许ALE(Address Latch Enable)锁
44、存。由启动命令START启动转换。转换完成输出一个负脉冲,外界的输出允许信号OE,打开三态缓冲器把转换的结果输至数据总线。一次A/D转换的过程就完成了。(3)ADC 0809与CPU的接口当A/D转换片子与CPU接口时除了数据的输出(至CPU)外,与通常的I/O接口一样,还需要有控制和状态信息。 在实际应用时,A/D的输入端接至采样保持电路的输出。但转换的开始,要由CPU用软件来控制(输出一条指令);而转换总是需要一定的时间才能完成,故A/D转换电路必须给出一个DONE/BUSY的状态信息7。此次设计是单片机应用的一个最小系统。设计中主要解决的问题有:由于MCS8051单片机是8位机,在显示模
45、块中显示气体浓度的数字有3位,需要在软件系统中对数字进行处理,这样才能够正常运行;单片机中P0,P1,P2以及P3口都能用于和ADC 0809之间进行连接,本次设计采用P1口和ADC0809进行连接;使用INT0口通过一个非门与ADC0809的EOC相连接,目的是利用单片机的中断口来调节控制整个系统并且给软件设计中写中断程序带来方便;ADDA、ADDB、ADDC分别与单片机的P2.0,P2.1,P2.2相连,用于控制ADC 0809的八路模拟转换。由于应用0809的时序和单片机时序的不同,时钟端不能直接相连,之间应加入一个分频电路,采用D触法器。时钟连接图如图3.3所示: 图3.3 ADC08
46、09与单片机时钟端的连接ADC0809芯片与单片机的连接图如图3.4: 图3.4 ADC0809与单片机的连接在本次设计中,为了能对单片机直接写入程序,避免调试过程中不断的插拔单片机,特制作了一个数据接口,用于和编程器相连。在写入程序时,应用单片机的P1.5,P1.6,P1.7以及RESET四个端口。写程序的过程中应将ADC0809的OE使能端接地。编程器接口电路如图3.5:3.2.2电源电路本次设计中应用的电源为+5V直流电压源。电源电路如图3.6所示为了使硬件调试方便,应用电脑USB接口提供硬件电源。下面对USB供电做简单介绍。现在主板对于USB设备大多使用两种供电方式,使用5VSB供电和5V供电。两种供电模式的主要区别为: 1. 5VSB供电模式下,系统关机(S5)或进入休眠(S3)后5VSB仍然存在,USB端口仍然会有5V电压;使用5V供电(不论是直接使用电源的5V还是由其它地方分压而来)在休眠后USB端口没有电压。 图3.5