欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    工程与科学计算历年试题.doc

    • 资源ID:881249       资源大小:261.48KB        全文页数:5页
    • 资源格式: DOC        下载积分:10积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要10积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    工程与科学计算历年试题.doc

    1、 20032008工程与科学计算历届试题类型2.迭代法例1. 设线性方程组为 , 写出求解线性方程组的Jacobi迭代格式,并确定当取何值时Jacobi迭代格式收敛.例2. 写出求解线性方程组的Seidel迭代格式,并判断所写格式的收敛性,其中为 3.插值例 1. 已知(1)试用二次插值多项式计算的近似值(数据保留至小数点后第5位)(2)估计所得结果的截断误差(数据保留至小数点后第5位)例 2. 由下列插值条件1246741011求4次Newton插值多项式, 并写出插值余项.4. RungeKutta格式例 写出标准方法解初值问题 的计算格式5. 代数精度例 1. 数值求积公式形如 试确定其

    2、中参数使其代数精度尽量高, 并确定代数精度.例 2. 验证数值求积公式 是Gauss型求积公式.6Romberg方法例 对积分,用Romberg方法计算积分的近似值,误差不超过并将结果填入下表(结果保留至小数点后第五位). 0 1 2 3 47证明 (1)设为上关于权函数的次正交多项式,以的零点为节点建立插值基函数,证明: 证明: 设n次正交多项式的零点为,则以这n个零点为节点建立的插值基函数是n-1次多项式,是2n-2次多项式. 故当取和时Gauss型求积公式 等号成立, 即 则有 (2)对线性方程组,若是阶非奇异阵,是的精确解,是的近似解。记证明: 证明:由于是的精确解,则 ,又是阶非奇异

    3、阵,则 ,且,则 故 (3)初值问题有解,若,是用Euler格式解得的在处的近似值,证明: .证明:记 ,且, Euler格式为 则有 . (4)设为非奇异阵,试证:线性方程组的数值解可用Seidel迭代方法求得.证明:因为为非奇异矩阵,故与是同解方程组,而正定,则Seidel格式收敛,即用Seidel方法一定能求得的解.(5)试导出求解初值问题 的梯形格式,并证明用梯形格式解初值问题 所得数值解为证明 将 在 上积分, 得 将右端的积分用梯形公式计算其近似值, 并用分别代替, 得 将代入梯形公式得 , 则有 得 因为 , 得 .(6)设,证明证明:的二次Lagrange插值多项式及余项形式为 其二阶导数为注意到,有 即 (7)证明求积公式 是稳定的.(8)设初值问题 中的区域D上关于满足Lipschitz条件,证明:格式 是收敛的.5


    注意事项

    本文(工程与科学计算历年试题.doc)为本站会员(精***)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922