欢迎来到沃文网! | 帮助中心 分享知识,传播智慧!
沃文网
全部分类
  • 教学课件>
  • 医学资料>
  • 技术资料>
  • 学术论文>
  • 资格考试>
  • 建筑施工>
  • 实用文档>
  • 其他资料>
  • ImageVerifierCode 换一换
    首页 沃文网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    动量及动量守恒定律习题大全(含解析答案).doc

    • 资源ID:971906       资源大小:696.50KB        全文页数:36页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,下载更划算!
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    动量及动量守恒定律习题大全(含解析答案).doc

    1、3应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。(3)确定过程的始、末状态,写出初动量和末动量表达式。注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。(4) 建立动量守恒方程求解。4 注重动量守恒定律的“五性”:条件性;整体性;矢量性;相对性;同时性二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹

    2、簧分析:在位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到位位置恰好分开。(1)弹簧是完全弹性的。压缩过程系统动能减少全部转化为弹性势能,状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此、状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证实A、B的最终速度分别为: 。(这个结论最好背下来,以后经常要用到。)(2)弹簧不是完全弹性的。压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部

    3、分转化为内能;因为全过程系统动能有损失。(3)弹簧完全没有弹性。压缩过程系统动能减少全部转化为内能,状态没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有分离过程。可以证实,A、B最终的共同速度为 。在完全非弹性碰撞过程中,系统的动能损失最大,为:。(这个结论最好背下来,以后经常要用到。)例题:【例1】 质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90且足够长。求小球能上升到的最大高度H 和物块的最终速度v。2子弹打木块类问题【例3】 设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再

    4、射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。3反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用过程中系统的动能增大,有其它能向动能转化。可以把这类问题统称为反冲。【例4】 质量为m的人站在质量为M,长为L的静止小船的右端,小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远?【例5】 总质量为M的火箭模型 从飞机上释放时的速度为v0,速度方向水平。火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4爆炸类问题【例6】 抛出的手雷在最高点时水平速度为10m/s,这时

    5、忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。5某一方向上的动量守恒【例7】 如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成角时,圆环移动的距离是多少?6物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,mM,A、B间动摩擦因数为,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:

    6、(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。【例9】两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为 , ,它们的下底面光滑,上表面粗糙;另有一质量 的滑块C(可视为质点),以 的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度 ; (2)滑块C离开A时的速度 。三、针对练习练习11质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子速度将( )A减小 B不变 C增大 D无法确定2某人站在静

    7、浮于水面的船上,从某时刻开始人从船头走向船尾,设水的阻力不计,那么在这段时间内人和船的运动情况是( )A人匀速走动,船则匀速后退,且两者的速度大小与它们的质量成反比B人匀加速走动,船则匀加速后退,且两者的速度大小一定相等C不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比D人走到船尾不再走动,船则停下3如图所示,放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各安闲桌面上滑行一段距离后,飞离桌面落在地上。A的落地点与桌边水平距离0.5m,B的落地点距离桌边1m,那么( )AA、B离开弹簧时的速度比为12BA、B质量比为21C未离开弹簧时,A、B所受

    8、冲量比为12D未离开弹簧时,A、B加速度之比124连同炮弹在内的车停放在水平地面上。炮车和弹质量为M,炮膛中炮弹质量为m,炮车与地面同时的动摩擦因数为,炮筒的仰角为。设炮弹以速度 射出,那么炮车在地面上后退的距离为_。5甲、乙两人在摩擦可略的冰面上以相同的速度相向滑行。甲手里拿着一只篮球,但总质量与乙相同。从某时刻起两人在行进中互相传球,当乙的速度恰好为零时,甲的速度为_,此时球在_位置。6如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg。当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为f=80N。若

    9、爆竹的火药质量以及空气阻力可忽略不计,g取 ,求爆竹能上升的最大高度。练习31在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是( )A若两球质量相同,碰后以某一相等速率互相分开B若两球质量相同,碰后以某一相等速率同向而行C若两球质量不同,碰后以某一相等速率互相分开D若两球质量不同,碰后以某一相等速率同向而行2如图所示,用细线挂一质量为M的木块,有一质量为m的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为 和v(设子弹穿过木块的时间和空气阻力不计),木块的速度大小为( )A B C D 3载人气球原静止于高h的空中,气球质量为M,人的质量为m。若人要沿绳梯着地

    10、,则绳梯长至少是( )A(m M)h/M Bmh/M CMh/m Dh4质量为2kg的小车以2m/s的速度沿光滑的水平面向右运动,若将质量为2kg的砂袋以3m/s的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A2.6m/s,向右 B2.6m/s,向左 C0.5m/s,向左 D0.8m/s,向右5在质量为M的小车中挂有一单摆,摆球的质量为 ,小车(和单摆)以恒定的速度V沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短。在此碰撞过程中,下列哪个或哪些说法是可能发生的( )A小车、木块、摆球的速度都发生变化,分别变为 、 、 ,满足 B摆球的速度不变,

    11、小车和木块的速度变为 和 ,满足 C摆球的速度不变,小车和木块的速度都变为v,满足MV(M m)vD小车和摆球的速度都变为 ,木块的速度变为 ,满足 6车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为( )Amv/M,向前 Bmv/M,向后Cmv/(m M),向前 D07向空中发射一物体,不计空气阻力。当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则( )Ab的速度方向一定与原速度方向相反B从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大Ca、b一定

    12、同时到达水平地面D在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等8两质量均为M的冰船A、B静止在光滑冰面上,轴线在一条直线上,船头相对,质量为m的小球从A船跳入B船,又马上跳回,A、B两船最后的速度之比是_。答案 【例1】解析:系统水平方向动量守恒,全过程机械能也守恒。在小球上升过程中,由水平方向系统动量守恒得: 由系统机械能守恒得: 解得 全过程系统水平动量守恒,机械能守恒,得 点评:本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。【例4】解析:先画出示意图。人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等

    13、于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两边同乘时间t,ml1=Ml2,而l1 l2=L, 点评:应该注重到:此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。做这类题目,首先要画好示意图,要非凡注重两个物体相对于地面的移动方向和两个物体位移大小之间的关系。以上所列举的人、船模型的前提是系统初动量为零。假如发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1 m2)v0= m1v1 m2v2列式。【例5】解析:火箭喷出燃气前后系统动量守恒。喷出燃气后火箭剩余质

    14、量变为M-m,以v0方向为正方向, 【例6】分析:手雷在空中爆炸时所受合外力应是它受到的重力G=( m1 m2 )g,可见系统的动量并不守恒。但在爆炸瞬间,内力远大于外力时,外力可以不计,系统的动量近似守恒。设手雷原飞行方向为正方向,则整体初速度 ;m1=0.3kg的大块速度为 m/s、m2=0.2kg的小块速度为 ,方向不清,暂设为正方向。由动量守恒定律:m/s此结果表明,质量为200克的部分以50m/s的速度向反方向运动,其中负号表示与所设正方向相反【例7】解析:虽然小球、细绳及圆环在运动过程中合外力不为零(杆的支持力与两圆环及小球的重力之和不相等)系统动量不守恒,但是系统在水平方向不受外

    15、力,因而水平动量守恒。设细绳与AB成角时小球的水平速度为v,圆环的水平速度为V,则由水平动量守恒有:MV=mv且在任意时刻或位置V与v均满足这一关系,加之时间相同,公式中的V和v可分别用其水平位移替代,则上式可写为:Md=m(L-Lcos)-d解得圆环移动的距离:d=mL(1-cos)/(M m)点评:以动量守恒定律等知识为依托,考查动量守恒条件的理解与灵活运用能力易出现的错误:(1)对动量守恒条件理解不深刻,对系统水平方向动量守恒感到怀疑,无法列出守恒方程.(2)找不出圆环与小球位移之和(L-Lcos)。【例8】解析:(1)由A、B系统动量守恒定律得:Mv0-mv0=(M m)v 所以v=

    16、v0方向向右(2)A向左运动速度减为零时,到达最远处,此时板车移动位移为s,速度为v,则由动量守恒定律得:Mv0-mv0=Mv 对板车应用动能定理得:-mgs= mv2- mv02 联立解得:s= v02【例9】解析:这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。(1)当C滑上A后,由于有摩擦力作用,将带动A和B一起运动,直至C滑上B后,A、B两木块分离,分离时木块A的速度为 。最后C相对静止在B上,与B以共同速度 运动,由动量守恒定律有 (2)为计算 ,我们以B、C为系统

    17、,C滑上B后与A分离,C、B系统水平方向动量守恒。C离开A时的速度为 ,B与A的速度同为 ,由动量守恒定律有 三、针对练习练习1参考答案1B砂子和小车组成的系统动量守恒,由动量守恒定律,在初状态,砂子落下前,砂子和车都以 向前运动;在末状态,砂子落下时具有与车相同的水平速度 ,车的速度为v,由 得 ,车速不变。此题易错选C,认为总质量减小,车速增大。这种想法错在研究对象的选取,应保持初末状态研究对象是同系统,质量不变。2A、C、D人和船组成的系统动量守恒,总动量为0,不管人如何走动,在任意时刻两者的动量大小相等,方向相反。若人停止运动而船也停止运动,选A、C、D。B项错在两者速度大小一定相等,

    18、人和船的质量不一定相等。3A、B、D A、B组成的系统在水平不受外力,动量守恒,从两物落地点到桌边的距离 ,两物体落地时间相等, 与x成正比, ,即A、B离开弹簧的速度比。由 ,可知 ,未离开弹簧时,A、B受到的弹力相同,作用时间相同,冲量I=Ft也相同,C错。未离开弹簧时,F相同,m不同,加速度 ,与质量成反比, 。4 提示:在发炮瞬间,炮车与炮弹组成的系统在水平方向上动量守恒, 发炮后,炮车受地面阻力作用而做匀减速运动,利用运动学公式,其中 , 50 甲提示:甲、乙和篮球组成的系统动量守恒,根据题设条件,可知甲与篮球的初动量与乙的初动量大小相等,方向相反,总动量为零。由动量守恒定律得,系统

    19、末动量也为零。因乙速度恰好为零,甲和球一起速度为零。6解:爆竹爆炸瞬间,木块获得的瞬时速度v可由牛顿第二定律和运动学公式求得, , 爆竹爆炸过程中,爆竹木块系统动量守恒 练习3参考答案1A、D A为弹性碰撞模型,即有mv-mv=mv-mv,等式两侧分别为始末状态系统动量和。B如用数学表达式表示,则违反了动量守恒定律。对于C,令两球的质量分别是M和m,且Mm,碰前两球速率相同,合动量方向与大球的动量方向相同,碰后两球速率相等但方向相反,合动量方向仍与质量大者方向相同,由动量守恒定律可知,碰撞前后合动量不变(包括大小和方向);而C项,碰后合动量反向,C项错。D答案的数学表达式为 ,v方向和质量大的

    20、物体初速方向相同,此结论是动量守恒定律中“合二为一”类问题。物理模型为“完全非弹性碰撞”。2B 取向右为正方向,由动量守恒定律, , 3A 气球和人组成系统所受合外力为零,系统动量守恒,人相对地的速度是v,气球相对地的速度是V,有mv-MV=0人相对地的位移是h,设气球相对地的位移是x, 得 梯子总长度 4C取向右为正方向,由动量守恒定律。其中 , , , 得22-23=4v,v=-0.5m/s5B、C碰撞从发生到结束是在极短时间内完成的,由于时间极短,摆球又是由摆线连接的,它完全不受碰撞的影响,仍保持原来的速度大小和方向。A、D两项违反上述分析,均不正确。6D 在车厢、人、子弹组成的系统中,

    21、合外力等于零,动量守恒。子弹与人的作用及子弹与车壁的作用,都是系统内力,不能使系统总动量发生变化。发射子弹前系统总动量为零,子弹打入前车壁后,系统的总动量也为零,车厢的速度为零。7C、D根据题设物理过程,其动量守恒 设 为较在原一块,则从这表达式可知,若 与 均为正向,那么 可能为正向也可能为负向,即 可能为正向(原方向),也可能为负向(反方向)。若 为反向,则 大于、等于、小于 的可能都有;若 为正向,因题设没有 一定大于或等于 的条件,则 大于、等于、小于 的可能也都有。A、B均不对。由于各自速度为水平方向,即平抛,所以不论速度大小如何,二者一定以 同时落地。炸裂过程 与 间的相互作用,从

    22、动量守恒角度看是内力作用,其冲量定是等值反向。C、D正确。8 提示:根据 , 合肥一中2012届高三第一轮复习“动量、能量”测试题满分:120分 考试时间:100分钟一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.从同一高度落下的玻璃杯掉在水泥地上易碎,掉在沙地上不易碎,这是因为玻璃杯落到水泥地上时( )A.受到的冲量大 B.动量变化率大 C.动量改变量大 D.动量大2.物体在恒定的合力F作用下做直线运动,在时间t1内速度由0增大到v,在时间t2内速度由v增

    23、大到2v.F在t1做的功为W1,冲量为I1;在t2做的功为W2,冲量为I2.那么( )A. I1 I2 , W1= W2 B. I1 I2 ,W1 W2 C. I1=I2 , W1= W2 D. I1=I2 ,W1tB B. EkAEkBC. vAvB D. mA mB 10.如图甲所示,一轻质弹簧的两端与质量分别为m1和m2的两物块A、B相连接,并静止在光滑的水平面上.现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都是处于压缩状态B.从t3到t4时刻弹簧由压缩状态恢复到

    24、原长C.两物体的质量之比为m1:m2=1:2v/ms-1乙Bt/s1OA23-1t1t2t3t4D.在t2时刻A和B的动能之比为Ek1: Ek2=1:8BAv甲三、计算题:本题6小题,共66分.解答写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.11、(13)(12分)质量为M的火箭以速度v0飞行在太空中,现在突然向后喷出一份质量为m的气体,喷出的气体相对于火箭的速度是v,喷气后火箭的速度是多少?11、(14).(15分)如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆一质量为M的小木块放在轨道水平部分,

    25、木块被水平飞来的质量为m的子弹射中,并滞留在木块中若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小11、(15)(18分)如图所示,在足够长的光滑水平轨道上静止三个小木块A、B、C,质量分别为mA=1kg,mB=1kg,mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A和B分开后,A恰好在BC之间的弹簧第一次恢复到原长时追上B,并且在碰撞后和B

    26、粘到一起。求:(1)在A追上B之前弹簧弹性势能的最大值;(2)A与B相碰以后弹簧弹性势能的最大值。v1水流13(10分)如图所示,质量为3.0kg的小车在光滑水平轨道上以2.0m/s速度向右运动一股水流以2.4m/s的水平速度自右向左射向小车后壁,已知水流流量为m3/s,射到车壁的水全部流入车厢内那么,经多长时间可使小车开始反向运动?(水的密度为kg/m3)mRhLM14.(10分)如图所示,在小车的一端高h的支架上固定着一个半径为R的1/4圆弧光滑导轨,一质量为m =0.2kg的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M=2kg,车身长L=0.22m

    27、,车与水平地面间摩擦不计,图中h =0.20m,重力加速度g=10m/s2,求R.15.(10分)如图所示,光滑轨道的DP段为水平直轨道,PQ段为半径是R的竖直半圆轨道,半圆轨道的下端与水平轨道的右端相切于P点.一轻质弹簧两端分别固定质量为2m的小球A和质量为m的小球B,质量为m的小球C靠在B球的右侧.现用外力作用在A和C上,弹簧被压缩(弹簧仍在弹性限度内),这时三个小球均静止于距离P端足够远的水平轨道上.若撤去外力,C球恰好可运动到轨道的最高点Q.已知重力加速度为g,求撤去外力前的瞬间,弹簧的弹性势能E是多大?ABCPQORDCAhB16.(12分)如图所示,A、B两物体与一轻质弹簧相连,静

    28、止在地面上.有一个小物体C从距A物体h高度处由静止释放,当下落至与A相碰后立即粘在一起向下运动,以后不再分开,当A和C运动到最高点时,物体B对地面恰好无压力.设A、B、C三物体的质量均为m,弹簧的劲度系数为k,不计空气阻力,且弹簧始终处于弹性限度内.若弹簧的弹性势能由劲度系数和形变量决定,求C物体下落时的高度h.17.(12分)质量为M=3kg的平板车放在光滑的水平面上,在平板车的最左端有一小物块(可视为质点),物块的质量为m=1kg,小车左端上方如图所示固定着一障碍物A,初始时,平板车与物块一起以水平速度v0=2m/s向左运动,当物块运动到障碍物A处时与A发生无机械能损失的碰撞,而小车继续向

    29、左运动,取重力加速度g=10m/s2.设平板车足够长,求物块与障碍物第一次碰撞后,物块与平板车所能获得的共同速度;设平板车足够长,物块与障碍物第一次碰撞后,物块向右运动对地所能达到的最大距离是s=0.4m,求物块与A第一次碰撞后到第二次碰撞前相对小车滑动的距离.AmMFL18.(12分)如图所示,质量为M=4kg的木板长L=1.4m,静止在光滑的水平地面上,其上端右侧静置一个质量为m=1kg的小滑块,小滑块与木板间的动摩擦因数为=0.4.今用一水平力F=28N向右拉木板,要使小滑块从木板上掉下来,求此力至少作用多长时间?(重力加速度g取10m/s2)合肥一中2012届高三第一轮复习“动量、能量

    30、”测试题参 考 答 案1.B.解析:从同一高度落下的玻璃杯与地接触前和最终速度相同,所以ACD错.2.D.解析:设物体的质量为m,由动量定理可知I1=p1=mv;I2=p2=mv.由动能定理可知W1=Ek1=;W2=Ek2=.3.BCD.解析:在C位置,小球的合外力为零,速度最大.从AC位置小球重力势能的减少量等于小球动能的增加量加弹性势能的增加量.从AD位置,小球的动能增量为零,所以小球重力势能的减少等于弹簧弹性势能的增加.4.D .解析:A、B两质点机械能守恒,D正确;A平抛,B类平抛的加速度小,而加速度方向的位移却大,所用时间长,所以AB错;A、B落地时的速度方向不同,故C错. 5.B.

    31、解析:若汽车的速度突然增大,则牵引力减小,阻力大于牵引力,汽车做减速运动,由于功率不变,速度减小牵引力又增大,则加速度减小.若汽车的速度突然减小,则牵引力增大,牵引力大于阻力,汽车做加速运动,由于功率不变,速度增大牵引力又减小,则加速度减小.6.C.解析:物体的加速度竖直向下且小于重力加速度,说明除重力外物体还受到向上的外力,这个外力对物体做正功,由功能关系可知物体的机械能必然增加.7.D.解析:A、B、C三个选项都满足动量守恒和动能不能增加的原则,所以是可能的.D选项碰撞前后动量虽然守恒,但动能增加了,所以不可能实现.8.D.解析:因为小球在摆动的过程中,竖直方向上有加速度,所以系统所受合外

    32、力不为零,总动量不守恒,则A选项错误.但系统在水平方向不受外力,系统在水平方向动量守恒,则选项B、C错误.小球在摆动到最低点之前,细线对车做正功,小车速度增大,小球通过到最低点之后,细线对车做负功,小车速度减小,所以小球摆到最低点时,小车的速度最大.9.BC.解析:子弹A、B射入木块的过程中木块始终保持静止,则两子弹和木板间的摩擦力必定大小相等,由动量守恒定律知两子弹的初动量也大小相等,由动量定理可知,它们在木块中运动的时间tA=tB.由动能定理和子弹A射入的深度dA大于子弹B射入的深度dB可知EkAEkB.由动能和动量的关系式可知mA vB.所以选项BC正确.10.CD.解析:由图可知t1时

    33、刻弹簧处于压缩状态,A、B具有共同速度,压缩量最大; t3时刻弹簧处于伸长状态,A、B具有共同速度,伸长量最大. t2时刻弹簧处于自然长度,A、B速度大小之比为12,对系统由动量守恒得m13= m1(-1)+ m22,即m1:m2=1:2,则t2时刻A和B的动能之比为1:8.11、(13)解:根据动量守恒定律: M v0 =(M-m)V -m(v - V)所以: V= (M v0 +m v)/M11、(14).解:设子弹射入木块瞬间速度为v,射入木块后的速度为vB,到达C点 时的速度为vC。子弹射入木块时,系统动量守恒,可得: 木块(含子弹)在BC段运动,满足机械能守恒条件,可得 木块(含子弹

    34、)在C点做圆周运动,设轨道对木块的弹力为T,木块对轨道的压力为T,可得: 又:T =T=(M+m)g 由、方程联立解得:子弹射入木块前瞬间的速度:11、(15)(1)塑胶炸药爆炸瞬间取A和B为研究对象,假设爆炸后瞬间AB的速度大小分别为vA、vB,取向右为正方向由动量守恒:mAvA+mBmB=0爆炸产生的热量由9J转化为AB的动能: 带入数据解得:vA = vB = 3m/s由于A在炸药爆炸后再次追上B的时候弹簧恰好第一次恢复到原长,则在A追上B之前弹簧已经有一次被压缩到最短,(即弹性势能最大)爆炸后取BC和弹簧为研究系统,当弹簧第一次被压缩到最短时BC达到共速vBC,此时弹簧的弹性势能最大,

    35、设为Ep1由动量守恒:mBvB=(mB+mC)vBC由能量定恒定定律:带入数据得:EP1=3J(2)设BC之间的弹簧第一次恢复到原长时B、C的速度大小分别为vB1和vC1,则由动量守恒和能量守恒: mBvB=mBvB1+mCvC1带入数据解得:vB1=1m/s vC1=2m/s (vB1=3m/s vC1=0m/s 不合题意,舍去。)A爆炸后先向左匀速运动,与弹性挡板碰撞以后速度大小不变,反向弹回。当A追上B,发生碰撞瞬间达到共速vAB由动量守恒:mAvA+mBvB1=(mA+mB)vAB解得:vAB=1m/s当ABC三者达到共同速度vABC时,弹簧的弹性势能最大为EP2由动量守恒:(mA+m

    36、B)vAB+mCvC1=(mA+mB+mC)vABC由能量守恒:带入数据得:EP2=0.5J13.解:由题意知,小车质量m=3.0kg ,速度v1=2.0m/s ;水流速度v2=2.4m/s,水流流量Q=m3/s,水的密度=kg/m3.设经t时间,流人车内的水的质量为M,此时车开始反向运动,车和水流在水平方向没有外力,动量守恒,所以有 mv1- Mv2=0 (3分)又因为 M=V (2分)V=Qt (3分)由以上各式带入数据解得 t=50s (2分)14.解:物体从圆弧的顶端无摩擦地滑到圆弧的底端过程中,水平方向没有外力.设物体滑到圆弧的底端时车速度为v1,物体速度为v2 对物体与车,由动量及

    37、机械能守恒得0=Mv1-mv2 (2分)mgR=Mv+m v (2分)物体滑到圆弧底端后车向右做匀速直线运动,物体向左做平抛运动,所以有h=gt2 (2分)L=(v1+v2)t (2分)由以上各式带入数据解得 R=0.055m (2分)15.解:对A、B、C及弹簧组成的系统,当弹簧第一次恢复原长时,设B、C共同速度大小为v0,A的速度大小为vA,由动量守恒定律有: 2 mvA = (m+m) v0 (2分)即 vA = v0由系统能量守恒有: (2分)此后B、C分离,设C恰好运动至最高点Q的速度为v,由机械能守恒有: (2分)在最高点Q,由牛顿第二定律有: (2分)联立 式解得:E =10mg

    38、R (2分)16.解:开始时A处于平衡状态,有kx=mg (1分)设当C下落h高度时的速度为v,则有: (1分)设C与A碰撞粘在一起时速度为v,根据动量守恒定律有:mv=2m v (2分)由题意可知A与C运动到最高点时,B对地面无压力,即kx=mg (1分)可见:x=x (2分)所以最高点时弹性势能与初始位置弹性势能相等.根据机械能守恒定律有: (3分)解得: (2分)17.解:以物块和车为系统,由动量守恒定律得: (2分) 代入已知数据解得,共同速度:v=1m/s (2分)设物块受到的摩擦力为f,对物块由动能定理得: (2分) 代入已知数据解得:f=5N (2分)物块与A第二次碰撞前已与车保持相对静止,对系统由能量守恒定律得: (2分)代入已知数据解得:s相对=1.2m (2分)18.解:以地面为参考系,整个过程中,小滑块向右做初速为零的匀加速直线运动.撤去拉力F前,木板向右做初速为零的匀加速直线运动;撤去拉力F后,木板向右做匀减速直线运动.要使小滑块从木板上掉下来,拉力F作用的最短时间对应的过程是:小滑块滑到木板左端时恰好与木板保持相对静止(即与木板达到共同的速度).设拉力F作用的最短时间为t,撤去拉力前木板的位移为s0,小滑块滑到木板左端并恰好与木板达到的共同速度为v.整个过程对系统由动量定理得: (3分)撤去拉力F前木板的位


    注意事项

    本文(动量及动量守恒定律习题大全(含解析答案).doc)为本站会员(风****)主动上传,沃文网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知沃文网(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给沃文网发消息,QQ:2622162128 - 联系我们

    版权声明:以上文章中所选用的图片及文字来源于网络以及用户投稿,由于未联系到知识产权人或未发现有关知识产权的登记,如有知识产权人并不愿意我们使用,如有侵权请立即联系:2622162128@qq.com ,我们立即下架或删除。

    Copyright© 2022-2024 www.wodocx.com ,All Rights Reserved |陕ICP备19002583号-1

    陕公网安备 61072602000132号     违法和不良信息举报:0916-4228922