医学统计学(参数估计).ppt
《医学统计学(参数估计).ppt》由会员分享,可在线阅读,更多相关《医学统计学(参数估计).ppt(39页珍藏版)》请在沃文网上搜索。
1、样本样本总体总体统计推断统计推断随机抽样随机抽样参数?参数?统计量统计量(、)(x x、s s、p p)参数估计参数估计假设检验假设检验第四章第四章 参数估计参数估计教学目的与要求教学目的与要求 v掌握:掌握:1、抽样分布与抽样误差、抽样分布与抽样误差2、t分布的概念和特征分布的概念和特征3、点估计、点估计4、总体均数的区间估计、总体均数的区间估计5、总体率的区间估计、总体率的区间估计v了解:了解:1、总体方差的置信区间、总体方差的置信区间教学内容提要教学内容提要 v重点讲解:重点讲解:抽样分布与抽样误差抽样分布与抽样误差t分布分布总体均数的区间估计总体均数的区间估计总体率的区间估计总体率的区
2、间估计v介绍:介绍:总体方差的置信区间总体方差的置信区间 v几个概念:几个概念:v计量资料:测定每个观察单位某项指标量的大小计量资料:测定每个观察单位某项指标量的大小得到的数据(资料)。得到的数据(资料)。v总体:研究对象(某项变量值)的全体。总体:研究对象(某项变量值)的全体。v样本:总体中随机抽取的一部分研究对象的某项样本:总体中随机抽取的一部分研究对象的某项变量值。变量值。v统计量:从样本计算出来的统计指标。统计量:从样本计算出来的统计指标。v参数:总体的统计指标叫参数。参数:总体的统计指标叫参数。v抽样误差抽样误差:由于抽样引起的样本统计量与总体参由于抽样引起的样本统计量与总体参数之间
3、的差异(举例,抽样误差的产生及含义)。数之间的差异(举例,抽样误差的产生及含义)。统计推断统计推断:用样本信息推论总体特征的过程。用样本信息推论总体特征的过程。包括:包括:参数估计参数估计:运用统计学原理,用从样本计算出来运用统计学原理,用从样本计算出来的统计指标量,对总体统计指标量进行估计。的统计指标量,对总体统计指标量进行估计。假设检验假设检验:又称显著性检验,是指由样本间存在又称显著性检验,是指由样本间存在的差别对样本所代表的总体间是否存在着差别做的差别对样本所代表的总体间是否存在着差别做出判断。出判断。抽样研究与抽样误差抽样研究与抽样误差 抽样研究的目的是要用样本信息推断总体特征,称统
4、计抽样研究的目的是要用样本信息推断总体特征,称统计推断。推断。1 1、抽样研究抽样研究:从总体中随机抽取一定数量的观察单位组成样从总体中随机抽取一定数量的观察单位组成样本,对其进行研究,以此来推断总体的情况。本,对其进行研究,以此来推断总体的情况。如从某地如从某地8岁的男孩中,随机抽取岁的男孩中,随机抽取200人,分别测量其身高,人,分别测量其身高,计算样本均数,用来估计该地计算样本均数,用来估计该地8岁男孩身高的总体均数就属岁男孩身高的总体均数就属于抽样研究。于抽样研究。2、均数的抽样误差均数的抽样误差(sampling error):是指由抽样造成的是指由抽样造成的样本均数与总体均数之差样
5、本均数与总体均数之差 。如如要要了了解解某某地地成成年年男男子子红红细细胞胞数数的的总总体体均均数数,抽抽 得得 一一 个个 144人人 的的 样样 本本,求求 出出 样样 本本 均均 数数 =5.381012/L,估估计计该该地地成成年年男男子子红红细细胞胞数数的的总总体体均均数数,由由于于存存在在抽抽样样误误差差 ,-称均数的抽样误差。称均数的抽样误差。均数的抽样误差均数的抽样误差一、一、抽样误差与抽样误差与标准误标准误的概念的概念反映了样本均数的离散程度反映了样本均数的离散程度,衡量衡量样本统计量样本统计量抽抽样误差样误差大小大小的统计指标。的统计指标。从同一总体中每次随机抽取样本含量相
6、等(都为从同一总体中每次随机抽取样本含量相等(都为n)的样的样本,每一个样本计算样本均数,由于本,每一个样本计算样本均数,由于抽样误差抽样误差的存在,这的存在,这些样本均数有大有小,其分布是以总体均数为中心的正态些样本均数有大有小,其分布是以总体均数为中心的正态分布分布.样本均数的标准差称为样本均数的标准差称为均数的均数的标准误。标准误。第一节第一节 抽样分布与抽样误差抽样分布与抽样误差标准误标准误标准误标准误标准误标准误 标准误标准误 =/s =s/标准差与均数标准误的区别与联系标准差与均数标准误的区别与联系 标标准差(准差(s)均数的标准误均数的标准误意意 义义描述描述个体个体值值围绕样围
7、绕样本均本均数的数的离散程度离散程度描述从同一描述从同一总总体中随机抽体中随机抽出出样样本含量相同的多个本含量相同的多个样样本均数本均数围绕总围绕总体均数的体均数的离离散程度散程度与与样样本含本含量的关系量的关系s随着随着n的增多逐的增多逐渐趋渐趋于于稳稳定,当定,当n200时,基时,基本稳定。本稳定。随着随着n的增多逐渐减小,的增多逐渐减小,当当n趋于总体时,则标准趋于总体时,则标准误趋近于误趋近于0。估计范围估计范围 正常值范围的估计正常值范围的估计总体均数置信区间的估计总体均数置信区间的估计两者两者联联系系当样本含量不变时,标准差愈大,标准误也愈大,当样本含量不变时,标准差愈大,标准误也
8、愈大,如均数的标准误愈标准差成正比。如均数的标准误愈标准差成正比。二、样本率的抽样分布与抽样误差二、样本率的抽样分布与抽样误差 v样本率与样本率之间,样本率与总体概率之间会样本率与样本率之间,样本率与总体概率之间会产生差异,称为产生差异,称为率的抽样误差率的抽样误差。v表示率的抽样误差的指标称为表示率的抽样误差的指标称为率的标准误率的标准误。v 计算公式:计算公式:p =(4-2)若总体率若总体率未知时:未知时:sp=(4-3)v举例举例 某地为了解钩虫病的感染情况,随机抽取某地为了解钩虫病的感染情况,随机抽取150人,其中人,其中10人感染,请计算感染率的抽人感染,请计算感染率的抽样误差样误
9、差(标准误标准误)第二节第二节 t 值与值与 t 分布分布 一、一、t t值值t值为样本均数与总体均数相差多值为样本均数与总体均数相差多少个标准误少个标准误Student t分布分布自由度:自由度:n-1随机变量随机变量X XN N(,)标准正态分布标准正态分布N(0,1)z变换z均数均数 标准正态分布标准正态分布N(0,1)z),(Ns/m二、二、t t 分布分布1.定义定义从同一总体中抽取许多大小从同一总体中抽取许多大小相同的样本,可得到许多相同的样本,可得到许多及及s,代入式,就可以得到,代入式,就可以得到许多的许多的t值,将这些值,将这些t值绘成值绘成直方图,当样本无限多时,直方图,当
10、样本无限多时,就绘成一条光滑的曲线,这就绘成一条光滑的曲线,这就是就是t分布曲线。这种分布曲线。这种t值的值的分布称分布称t分布。分布。2t 分布的特征分布的特征(1)t分布是以分布是以0为中心,左右对称的单峰分布。为中心,左右对称的单峰分布。(2)形似标准正态分布,与自由度有关。)形似标准正态分布,与自由度有关。(3)t分布是一簇曲线。分布是一簇曲线。z N(0,1)t 分布(与分布(与z分布比较的特点)分布比较的特点)t 分布分布示意图示意图 3.t 界值界值表表(附表(附表7 P190)横坐标:自由度,横坐标:自由度,纵坐标:概率纵坐标:概率 p,即曲线下阴影部分的面积,即曲线下阴影部分
11、的面积,p的的 意思是从正态总体作随机抽样,得到样本意思是从正态总体作随机抽样,得到样本 t值落在该区间的概率值落在该区间的概率;表中的数字:相应的表中的数字:相应的|t|界值。界值。4t 分布的规律分布的规律 t 界值有单侧和双侧两种情界值有单侧和双侧两种情况:自由度为况:自由度为df时,表示方法时,表示方法:t 分布的双侧分布的双侧界值记为界值记为t/2,df,P(|t|t/2,df)=;t 分布的单侧分布的单侧界值记为界值记为 t,df,P(t t,df)=,P(t t,df)=。4.t 分布的规律分布的规律:(1)自由度(自由度()一定时,)一定时,p 与与 t 成反比成反比;自由度自
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学 统计学 参数估计
