基于Fuzzy-AHP的车辆工程专业课程分类研究.doc
《基于Fuzzy-AHP的车辆工程专业课程分类研究.doc》由会员分享,可在线阅读,更多相关《基于Fuzzy-AHP的车辆工程专业课程分类研究.doc(18页珍藏版)》请在沃文网上搜索。
1、目 录引言 31 模糊层次分析法的数学模型31.1模糊互补判断矩阵的建立31.2模糊互补判断矩阵的权重公式41.3模糊互补判断矩阵的一致性检验方法42运用Fuzzy-AHP对车辆工程专业课程的分析研究 52.1专业必修课安排的研究 52.1.1 权重矩阵的确定62.1.2 指标矩阵的确定72.1.3 层次总排序及优选结果82.2专业选修课(车辆设计制造模块)安排的研究92.2.1 权重矩阵的确定92.2.2 指标矩阵的确定92.2.3 层次总排序及优选结果112.3专业选修课(车辆检测维修模块)安排的研究112.3.1 权重矩阵的确定112.3.2 指标矩阵的确定122.3.3 层次总排序及优
2、选结果133 总结 13附件:1、车辆工程专业教学进程计划2、车辆工程专业教学进程计划(续)3、车辆工程专业课程教材和内容介绍基于Fuzzy-AHP的车辆工程专业课程分类研究摘 要:Fuzzy-AHP(即模糊层次分析法)将层次分析法扩展到模糊环境中,在多目标决策问题中具有独特优越性。介绍了模糊层次分析法的基本原理及其数学模型的建立,给出了模糊互补判断矩阵的建立方法,权重公式及一致性检验公式。利用该分析法对车辆工程专业课程进行分类研究以得出课程安排最优方案。关键词:Fuzzy-AHP 车辆工程 专业课程 引言AHP(Analytic Hierarchy Process,即层次分析法)是目前在多目
3、标、多判据的系统选优排序中应用得比较广泛的一种方法,其关键在于构造各层次的判断矩阵,但是由于没有考虑到人为判断的模糊性,所以导致部分结论不准确。本文充分利用模糊数学将AHP扩展到模糊环境中,得到的Fuzzy-AHP(Fuzzy Analytic Hierarchy Process,即模糊层次分析法)的分析方法对我校车辆工程专业课程进行分类研究从而得出课程安排的最优方案。1模糊层次分析法的数学模型层次分析法是美国运筹学家T.L.Saaty提出的一种定性和定量相结合的决策方法。在模糊层次分析中,作因素间的两两比较判断时,如果不用三角模糊数来定量化,而是采用一个因素比另一个因素的重要程度定量表示,则
4、得到模糊判断矩阵。下面介绍如何建立模糊互补判断矩阵、模糊互补判断矩阵权重的计算方法以及模糊互补判断矩阵的一致性判断方法。1.1模糊互补判断矩阵的建立在模糊层次分析中,作因素间的两两比较判断时,采用一个因素比另一个因素的重要程度定量表示,则得到的模糊判断矩阵A=(aij)nn,如果其具有如下性质:1)aii=0.5,i=1,2,n;2)aij+aji=1,i,j=1,2,n;则这样的判断矩阵称为模糊互补判断矩阵。为了使任意两个方案关于某准则的相对重要程度得到定量描述,通常采用如表1的0.10.9标度法给予数量标度。表10.10.9标度法及其意义标度定义说明0.5同等重要两元素相比较,同等重要0.
5、6稍微重要两元素相比较,一元素比另一元素稍微重要0.7明显重要两元素相比较,一元素比另一元素明显重要0.8重要得多两元素相比较,一元素比另一元素重要得多0.9极端重要两元素相比较,一元素比另一元素极端重要0.1,0.2,0.3,0.4反比较若元素ai与元素aj相比较得到判断rii,则原素aj与元素ai相比较得到的判断为rji=1-rijaii=0.5表示因素与自己相比同样重要;若aij0.1,0.5),则表示因素xj比xi重要;若aij(0.5,0.9,则表示因素xi比xj重要。依据上面的数字标度,因素a1,a2,an相互进行比较,则得到如下模糊互补判断矩阵:1.2模糊互补判断矩阵的权重公式文
6、献4推导出了求解模糊互补判断矩阵权重的一种通用公式,该公式充分包含了模糊一致性判断矩阵的优良特性及其判断信息,计算量小且便于计算机编程实现,为实际应用带来了极大方便。该求解模糊互补判断矩阵权重的公式如下:1.3模糊互补判断矩阵的一致性检验方法由式(2)得到的权重值是否合理,还应该进行比较判断的一致性检验。当偏移一致性过大时,表明此时将权向量的计算结果作为决策依据是不可靠的。文献5推导出了用模糊判断矩阵的相容性来检验其一致性原则的方法。定义1:设矩阵A=(aij)nn和B=(bij)nn均为模糊判断矩阵,称为A和B的相容性指标。定义2:设W=(W1,W2,Wn)T是模糊判断矩阵A的权重向量,其中
7、,Wi0(i=1,2,n),令,( i,j=1,2,3,n),则称n阶矩阵 W*=(Wij)nn (4)为判断矩阵A的特征矩阵。对于决策者的态度,当相容性指标I(A,W)时,认为判断矩阵为满意一致性的。越小表明决策者对模糊判断矩阵的一致性要求越高,一般可取=0.1。对于实际的问题,一般都是由多个(设k=1,2,m)专家给出同一因素集X上的两两比较判断矩阵AK=(a(k)ij)nn (k=1,2,m)它们均是模糊互补判断矩阵,则可分别得到权重集的集合W(k)=(w(k)1,w(k)2,w(k)n)(k=1,2,m)则进行模糊互补判断矩阵的一致性检验,要做以下两方面的工作:1)检验m个判断矩阵Ak
8、的满意一致性: I(Ak,W(k),k=1,2,m2)检验判断矩阵间的满意相容性: I(Ak,Al),kl;k,l=1,2,m可以证明在模糊互补判断矩阵Ak(k=1,2,m)是一致可接受的情况下,它们的综合判断矩阵也是一致可接受的6。即只要当1)和2)两条满足时,m个权重集的均值作为因素集X的权重分配向量是合理和可靠的。权重向量表达式 W=(W1,W2,Wn) (5) 式(5)中:(i=1,2,n)2运用Fuzzy-AHP对车辆工程专业课程的分析研究我校车辆工程专业课程分为专业必修课和专业选修课,其中专业选修课又分为车辆设计制造模块、车辆检测维修模块、任选课。专业必修课有七门科目分别为微机原理
9、与应用、车辆液压与液力传动、机械工程控制基础、发动机原理、汽车构造、汽车理论、汽车电器。车辆设计制造模块包括工程材料及热处理、发动机设计、汽车底盘设计、机械制造技术、互换性与测量技术。车辆检测维修模块包括车辆控制、传感器与测试技术、汽车电子技术、发动机维修、汽车故障诊断。由于任选课与专业主干学科联系不紧密且是根据不同学生的兴趣进行选修所以不再本文中加以分析。2.1专业必修课安排的研究用模糊层次分析法进行综合评价,将影响专业必修课安排的众多因素进行分类,认为其主要来自4个大的方面:F1(理论基础)、F2(先修科目联系)、F3(汽车部件设计相关)、F4(汽车总体设计相关),把这4个方面的因素作为一
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 Fuzzy AHP 车辆 工程 专业课程 分类 研究