九年级数学 第二章 二次函数(一).doc
《九年级数学 第二章 二次函数(一).doc》由会员分享,可在线阅读,更多相关《九年级数学 第二章 二次函数(一).doc(14页珍藏版)》请在沃文网上搜索。
1、浙教版九年级数学同步练习 第14页 第2章 二次函数第1课时二次函数(1)【知识要点】1形如y=ax2+bx+c(a,b,c是常数,a0)的函数,叫二次函数 2在函数y=ax2+bx+c中,a,b,c分别是二次项系数、一次项系数及常数项课内同步精练A组 基础练习1某工厂第一年的利润为20(万元),第三年的利润y(万元),与平均年增长率x之间的函数关系式是 .2在下列函数关系式中,哪些是二次函数(是二次函数的在括号内打上“”,不是的打“x”). (l)y=-2x2 ( ) (2)y=x-x2 ( ) (3)y=2(x-1)2+3 ( ) (4)y=-3x2-3 ( ) (5) s=a(8-a)
2、( )3说出下列二次函数的二次项系数a,一次项系数b和常数项c (1)y=x2中a= ,b= ,c= ; (2)y=5x2+2x中a= ,b= ,c= ; (3)y=(2x-1)2中a= ,b= ,c= ;4已知二次函数y=x2+bx-c,当x=-1时,y=0;当x=3时,y=0,则b= ;c= .B组 提高训练5.已知正方形边长为3,若边长增加x,那么面积增加y,则y与x的函数关系式是 .6.在半径为4cm的圆面上,从中挖去一个半径为x的同心圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为 .课外拓展练习A组 基础练习1.当m是何值时,下列函数是二次函数,并写出这时的函数关系式(1
3、)y=,m= ,y= ;(2) y=,m= ,y= ;(3) y=,m= ,y= .2.函数y=ax2+bx+c(a,b,c是常数)问当a,b,c满足什么条件时: (l)它是二次函数 ;(2)它是一次函数 ;(3)它是正比例函数 ;B组 提高训练3已知二次函数y=ax2+bx+c(a0),若x=0时y=1;x=1时y=1;x=2时y=-1.求这个二次函数关系式.4已知二次函数y=ax2+bx+c(a0),若x=1时y=3;x=-1时y=4;x=-2时y=3.求这个二次函数关系式.第2课时二次函数的图象(1)【知识要点】1.函数y=ax2的图象是一条抛物线,它的对称轴是y轴,图像的顶点是(0,0
4、)2.函数y=ax2,当a0时,抛物线的开口向上;当a0时,对称轴的左侧y随x的增大而减小,对称轴的右侧y随x的增大而增大;当x=0时函数y有最小值0.课内同步精练A组 基础练习1函数y=ax2(a0)的图象叫做 ,它关于 轴对称,它的顶点是 .2当a0时,y=ax2在x轴上的 (其中顶点在 轴上),它的开口 并且向上无限 .3.函数的对称轴是 ,顶点坐标是 ,对称轴的右侧y随x的增大而 ,当x= 时,函数y有最 值,是 .4.函数y=3x2与函数y=-3x2的图象的形状 ,但 不同. B组 提高训练5.一个函数的图象是一条以y轴为对称轴,以原点为顶点的抛物线,且经过点A(-2,8).(l)求
5、这个函数的解析式; (2)画出函数图象; (3)写出抛物线上与点A关于y轴对称的点B的坐标,并计算OAB的面积课外拓展练习A组 基础练习1.抛物线y=ax2与y=2x2形状相同,则a= .2.已知函数y=ax2当x=1时y=3,则a= , 对称轴是 ,顶点是 . 抛物线的开口 ,在对称轴的左侧,y随x增大而 ,当x= 时,函数y有最 值,是 .3.若抛物线y=ax2经过点P ( l,-2 ),则它也经过 ( ) A. P1(-1,-2 ) B. P2(-l, 2 ) C.P3( l, 2) D.P4(2, 1)B组 提高训练4.有一桥孔形状是一条开口向下的抛物线 (1)作出这条抛物线; (2)
6、利用图象,当水面与抛物线顶点的距离为4m时,求水面的宽; (3)当水面宽为6m时,水面与抛物线顶点的距离是多少?第3课时二次函数的图像(2)【知识要点】函数y=a(x+m)2+k(a,m,k是常数,a0).当a0时,图像开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,右侧y随x的增大而 ,当x= 时,y有最 值,是 .当a0时,函数y有最小值,是 . 当a 0时,函数y有最大值,是 .课内同步精练A组 基础练习1. 函数y=2x2-8x+1,当x= 时,函数有最 值,是 .2. 函数,当x= 时,函数有最 值,是 .3. 函数y=x2-3x-4的图象开口 ,对称轴是 ,顶点
7、坐标是 ,在对称轴的左侧,y随x的增大而 ,当x 时,函数y有最 值,是 .B组 提高训练4. 把40表示成两个正数的和,使这两个正数的乘积最大,则这两个数分别是 .5. 如图,用长20m的篱笆,一面靠墙围成一个长方形的园子,怎么围才能使园子的面积最大?最大面积是多少?课外拓展练习A组 基础练习1. 把二次函数的图象向右平移2个单位,再向上平移3个单位,所得到图象的函数解析式是 ( ) A. B. C. D. 2. 抛物线y=2x2-5x+3与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个3. 二次函数y=(x-3)(x+2)的图象的对称轴是 ( ) A.x=3 B
8、.x=-2 C.x=- D.x=4. 二次函数y=-2x2+4x-9的最大值是 A.7 B.-7 C.9 D.-9B组 提高训练5. 己知直角三角形的两直角边的和为2,求斜边长的最小值,以及当斜边长达到最小值时的两条直角边的长第5课时二次函数的性质【知识要点】 1若已知抛物线的顶点为(0, 0),则二次函数的关系式可设为y=ax2(a0 ). 2若已知抛物线的顶点在y轴上,则二次函数的关系式可设为y=ax2+k(a0 ).3若已知抛物线的顶点在x轴上,则二次函数的关系式可设为y=a(x+m)2 (a0 ).4若已知抛物线的顶汽为( m , k )则二次函数的关系式可设为y = a ( x-m)
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级数学 第二章 二次函数一 九年级 数学 第二 二次 函数