新课标人教版A版数学必修1全套教案.doc
《新课标人教版A版数学必修1全套教案.doc》由会员分享,可在线阅读,更多相关《新课标人教版A版数学必修1全套教案.doc(95页珍藏版)》请在沃文网上搜索。
1、人教版高中数学必修1精品教案(整套)课题:集合的含义与表示(1)课 型:新授课教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念集合(宣布课题),即是一些研究对象的
2、总体。阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。对学生的解答予以讨论、点
3、评,进而讲解下面的问题。4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)无序性:给定一个集合与集合里面元素的顺序无关。(4)集合相等:构成两个集合的元素完全一样。5. 元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:aA(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示“120以内的所
4、有质数”组成的集合,则有3A4A,等等。6集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C表示,集合的元素用小写的拉丁字母a,b,c,表示。常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1用“”或“”符号填空: (1)8 N; (2)0 N; (3)-3 Z; (4) Q; (5)设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国 A。例2已知集合P的元素为, 若3P且-1P,求实数m的值。(三)课堂练习:课本P5练习1;归纳小结:本节课从实例入手,非常自然贴切地引出集
5、合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了常用集合及其记法。作业布置:1习题1.1,第1- 2题;2预习集合的表示方法。课后记: 课题:集合的含义与表示(2)课 型:新授课教学目标:(1)了解集合的表示方法;(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:掌握集合的表示方法;教学难点:选择恰当的表示方法;教学过程:一、复习回顾:集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。集合1,2、(1,2)、(2,1)、2,1的元素分别是什么?有何关系二、新课教学(一)集合的表示方法我们可以用自
6、然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。(1) 列举法:把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫列举法。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;说明:1集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。2各个元素之间要用逗号隔开;3元素不能重复; 4集合中的元素可以数,点,代数式等;5对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集用列举法表示为例1(课本例1)用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方
7、程x2=x的所有实数根组成的集合;(3)由1到20以内的所有质数组成的集合;(4)方程组的解组成的集合。思考2:(课本P4的思考题)得出描述法的定义:(2)描述法:把集合中的元素的公共属性描述出来,写在花括号内。具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。一般格式:如:x|x-32,(x,y)|y=x2+1,x直角三角形,;说明:1课本P5最后一段话;2描述法表示集合应注意集合的代表元素,如(x,y)|y= x2+3x+2与 y|y= x2+3x+2是不同的两个集合,只要不引起误解,集合的代表元素也可省略,
8、例如:x整数,即代表整数集Z。辨析:这里的 已包含“所有”的意思,所以不必写全体整数。下列写法实数集,R也是错误的。例2(课本例2)试分别用列举法和描述法表示下列集合:(1)方程x22=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合;(3)方程组的解。思考3:(课本P6思考)说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。(二)课堂练习:课本P6练习2;用适当的方法表示集合:大于0的所有奇数集合Ax|Z,xN,则它的元素是 。已知集合Ax|-3x3,xZ,B(x,y)|yx+1,xA,则集合B
9、用列举法表示是 归纳小结:本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。作业布置:1 习题1.1,第4题;2 课后预习集合间的基本关系.课后记:课题:集合间的基本关系课 型:新授课教学目标:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn图表达集合间的关系;(4)了解空集的含义。教学重点:子集与空集的概念;能利用Venn图表达集合间的关系。教学难点:弄清楚属于与包含的关系。教学过程:一、复习回顾:1.提问:集合的两种表示方法? 如何用适当的方法表示下列集合? (1)10以内3的倍数; (2)1000以内3的倍数2.用适当的符号填空:
10、 0 N; Q; -1.5 R。思考1:类比实数的大小关系,如57,22,试想集合间是否有类似的“大小”关系呢?二、新课教学(一). 子集、空集等概念的教学:比较下面几个例子,试发现两个集合之间的关系:(1),;(2),;(3), 由学生通过观察得结论。1 子集的定义:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于(is contained in)B,或B包含(contains)A当集合A不包含于集合B时,记作用Venn图表示两个集合间的“包含”关系:B A 如:(1)中 2 集合相等定
11、义:如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B中的元素是一样的,因此集合A与集合B相等,即若,则。 如(3)中的两集合。3 真子集定义:若集合,但存在元素,则称集合A是集合B的真子集(proper subset)。记作:A B(或B A) 读作:A真包含于B(或B真包含A) 如:(1)和(2)中A B,C D;4 空集定义:不含有任何元素的集合称为空集(empty set),记作:。用适当的符号填空: ; 0 ; ; 思考2:课本P7 的思考题5 几个重要的结论:(1) 空集是任何集合的子集;(2) 空集是任何非空集合的真子集;(3) 任何一个集合是它本身的子集;(4) 对
12、于集合A,B,C,如果,且,那么。说明:1 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;2 在分析有关集合问题时,要注意空集的地位。(二)例题讲解:例1填空:(1) 2 N; N; A; (2)已知集合Ax|x3x20,B1,2,Cx|x8,xN,则 A B; A C; 2 C; 2 C 例2(课本例3)写出集合的所有子集,并指出哪些是它的真子集。 例3若集合 B A,求m的值。 (m=0或)例4已知集合且,求实数m的取值范围。 ()(三)课堂练习:课本P7练习1,2,3归纳小结:本节课从实例入手,非常自然贴切地引出子集、真子集、空集、相等的概念及符号;
13、并用Venn图直观地把这种关系表示出来;注意包含与属于符号的运用。作业布置:1 习题1.1,第5题;2 预习集合的运算。课后记:课题:集合的基本运算课 型:新授课教学目标:(1)理解交集与并集的概念;(2)掌握交集与并集的区别与联系;(3)会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题。教学重点:交集与并集的概念,数形结合的思想。教学难点:理解交集与并集的概念、符号之间的区别与联系。教学过程:一、复习回顾:1已知A=1,2,3,S=1,2,3,4,5,则A S;x|xS且xA= 。2用适当符号填空:0 0; 0 ; x|x10,xR 0 x|x5; x|x6 x|x5 ; x|
14、x3 x2二、新课教学(一). 交集、并集概念及性质的教学:思考1考察下列集合,说出集合C与集合A,B之间的关系:(1),;(2),; 由学生通过观察得结论。6 并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A与集合B的并集(union set)。记作:AB(读作:“A并B”),即 用Venn图表示: 这样,在问题(1)(2)中,集合A,B的并集是C,即 = C说明:定义中要注意“所有”和“或”这两个条件。讨论:AB与集合A、B有什么特殊的关系?AA , A , AB BAABA , ABB .巩固练习(口答): A3,5,6,8,B4,5,7,8,则AB ;设A
15、锐角三角形,B钝角三角形,则AB ; Ax|x3,Bx|x3,Bx|x0,Bx|x3,则A、B与R有何关系?二、新课教学思考1 U=全班同学、A=全班参加足球队的同学、B=全班没有参加足球队的同学,则U、A、B有何关系? 由学生通过讨论得出结论:集合B是集合U中除去集合A之后余下来的集合。 (一). 全集、补集概念及性质的教学:8 全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),记作U,是相对于所研究问题而言的一个相对概念。9 补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集合A相对于全集U的
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标人教版 数学 必修 全套 教案