基于神经网络的图像识别与方法研究.doc
《基于神经网络的图像识别与方法研究.doc》由会员分享,可在线阅读,更多相关《基于神经网络的图像识别与方法研究.doc(11页珍藏版)》请在沃文网上搜索。
1、忻州师院计算机系本科学士学位论文目 录1引言21.1 人工神经网络的研究背景和意义21.2 神经网络的发展与研究现状21.2.1 神经网络的发展21.2.2 神经网络的现状21.3 神经网络的应用32 神经网络结构及BP神经网络32.1 神经元与网络结构32.1.1 生物神经元32.1.1 人工神经元32.1.3人工神经网络的构成32.2 BP神经网络及其原理32.2.2 BP神经网络模型及其基本原理42.3 BP神经网络的主要功能42.4 BP网络的优点以及局限性43 BP神经网络在实例中的应用43.1 基于MATLAB的BP神经网络工具箱函数43.1.1 BP网络创建函数53.1.2 BP
2、网络训练函数53.1.3 BP网络的图像压缩的matlab实现53.2 基于BP神经图像压缩函数64仿真实验65本章小结9致 谢9参考文献10基于神经网络的图像识别方法与研究 摘要本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,并给出神经网络算法的基本流程。采用Matlab软件编程实现BP神经网络算法。将神经网络算法应用于图像压缩中,并分析相关参数对算法运行结果的影响。 关键词: 神经网络 BP神经网络 图像压缩AbstractFirst,the research purpose and
3、significance of neural network is expounded in this article,Commentary studies current situation at the problem home and abroad.and then have analyzed algorithmic basal principle of neural networks,Give algorithmic concert of classics neural networks out the realization method.Summing up the charact
4、eristics of neural network algorithm.Neural network algorithm is given the basic processes. The arithmetic of BP neural network is realized in Matlab software .The algorithm applies of BP neural networks to the computes the image compression.And analysis of relevant paraments on the results of algor
5、ithm.Key words: Neural network BP neural network image compression1引言 BP神经网络是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型,具有自学习、自组织、自适应和很强的非线性映射能力,近年来,为了解决BP网络收敛速度慢,训练时间长等不足,提出了许多改进算法.然而,在针对实际问题的BP网络建模过程中,选择多少层网络,每层多少个神经元节点,选择何种传递函数等,均无可行的理论指导,只能通过大量的实验计算获得.MATLAB中的神经网络工具箱(Neural NetworkToolbox,简称NNbox),为解决这一问题提供了便
6、利的条件.神经网络工具箱功能十分完善,提供了各种MATLAB函数,包括神经网络的建立、训练和仿真等函数,以及各种改进训练算法函数,用户可以很方便地进行神经网络的设计和仿真,也可以在MATLAB源文件的基础上进行适当修改,形成自己的工具包以满足实际需要。此项课题主要是针对MATLAB软件对BP神经网络的各种算法的编程,将神经网络算法应用于图像压缩中,并分析比较相关参数对算法运行结果的影响。1.1 人工神经网络的研究背景和意义 近年来通过对人工神经网络的研究,可以看出神经网络的研究目的和意义有以下三点:(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质
7、,探索智能的本源。(2)争取构造出尽可能与人脑具有相似功能的计算机,即神经网络计算机。(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。1.2 神经网络的发展与研究现状 1.2.1 神经网络的发展神经网络起源于20世纪40年代,至今发展已半个多世纪,大致分为三个阶段。(1)20世纪50年代-20世纪60年代:第一次研究高潮(2)20世纪60年代-20世纪70年代:低潮时期(3)20世纪80年代-90年代:第二次研究高潮1.2.2 神经网络的现状(1)开发现有模型的应用,并在应用中根据实际运行情况对模型、算法加以改造,以提高网络的训练速
8、度和运行的准确度。(2)充分发挥两种技术各自的优势是一个有效方法。(3)希望在理论上寻找新的突破,建立新的专用/通用模型和算法。(4)进一步对生物神经系统进行研究,不断地丰富对人脑的认识。1.3 神经网络的应用 神经网络理论的应用取得了令人瞩目的发展,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别、CAD/CAM等方面都有重大的应用实例。2 神经网络结构及BP神经网络2.1 神经元与网络结构人工神经网络(artificial neural network,ANN)是模仿生物神经网络功能的一种经验模型。神经网络是由大量的处理单元(神经元)互相连接而成的网络。为了模拟大脑的基本
9、特性,在神经科学研究的基础上,提出了神经网络的模型。2.1.1 生物神经元人脑大约由1012个神经元组成,神经元互相连接成神经网络。它主要由细胞体、树突、轴突和突触组成。2.1.2 人工神经元生物神经元是一个多输入、单输出单元。2.1.3人工神经网络的构成 神经网络连接的几种基本形式: (1)前向网络 (2)从输出到输入有反馈的前向网络 (3)层内互连前向网络 (4) 相互结合型网络2.2 BP神经网络及其原理BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。2.2.2 BP神经网络模型及其基本原理图2
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 神经网络 图像 识别 方法 研究
