量子力学知识点小结.doc
《量子力学知识点小结.doc》由会员分享,可在线阅读,更多相关《量子力学知识点小结.doc(25页珍藏版)》请在沃文网上搜索。
1、第一章玻尔的量子化条件,索末菲的量子化条件。黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。普朗克量子假说:表述1:对于一定频率的辐射,物体只能以h为能量单位吸收或发射电磁辐射。表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:=h。表述3:物体吸收或发射电磁辐射时,只能以能量的整数倍来实现,即,2,3,。光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。光电效应有两个突出的特点: 存在临界频率0 :只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
2、 光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= h的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程光电效应机理: 当光射到金属表面上时,能量为 E= h 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。解释光电效应的两个典型特点:存在临界频率v0:由上式明显看出,当h- W0 0时,即0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。光电子动能只决定于光子的频率:上式表明光电子
3、的能量只与光的频率有关,而与光的强度无关。康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。康普顿效应的实验规律: 散射光中,除了原来X光的波长外,增加了一个新的波长为的X光,且 ;波长增量=-随散射角增大而增大。量子现象凡是普朗克常数h在其中起重要作用的现象光具有微粒和波动的双重性质,这种性质称为光的波粒二象性与运动粒子相联系的波称为德布罗意波或物质波。光谱线:光经过一系列光学透镜及棱镜后,会在底片上留下若干条线,每个线条就是一条光谱线。所有光谱线的总和称为光谱。线状光谱:原子光谱是由一条条断续的光谱线构成的。21.标识线状光谱:对于确定的原子,在各种激发条件下得到的光
4、谱总是完全一样的,也就是说,可以表征原子特征的线状光谱。第二章量子力学中,原子的轨道半径的含义。波函数的物理意义:某时刻t在空间某一点(x,y,z)波函数模的平方与该时刻t该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。按照这种解释,描写粒子的波是几率波。 波函数的特性:波函数乘上一个常数后,并不改变在空间各点找到粒子的几率,即不改变波函数所描写的状态。波函数的归一化条件 态叠加原理:若体系具有一系列不同的可能状态1,2,n,则这些可能状态的任意线性组合,也一定是该体系的一个可能的状态。也可以说,当体系处于态时,体系部分地处于态1,2,n中。波
5、函数的标准条件:单值性,有限性和连续性,波函数归一化。定态:微观体系处于具有确定的能量值的状态称为定态。定态波函数:描述定态的波函数称为定态波函数。定态的性质:由定态波函数给出的几率密度不随时间改变。粒子几率流密度不随时间改变。任何不显含时间变量的力学量的平均值不随时间改变。本征方程、本征值和本征波函数:在量子力学中,若一个算符作用在一个波函数上,等于一个常数乘以该波函数,则称此方程为该算符的本征方程。常数fn为该算符的第n个本征值。波函数n为fn相应的本征波函数。束缚态:在无穷远处为零的波函数所描述的状态。基态:体系能量最低的态。宇称:在一维问题中,凡波函数(x)为x的偶函数的态称为偶(正)
6、宇称态;凡波函数(x)为x的奇函数的态称为奇(负)宇称态。在一维空间内运动的粒子的势能为(2x2)/2, 是常数,这种粒子构成的体系称为线性谐振子。 线性谐振子的能级为:透射系数:透射波几率流密度与入射波几率流密度之比。反射系数:反射波几率流密度与入射波几率流密度之比。隧道效应:粒子在能量E小于势垒高度时仍能贯穿势垒的现象。16量子力学的波函数与经典的波场有何本质性的区别?答: 量子力学的波函数是一种概率波,没有直接可测的物理意义,它的模方表示概率,才有可测的意义;经典的波场代表一种物理场,有直接可测的物理意义。17什么是量子力学中的定态?它有什么特征?答:定态是一种特殊状态即能量本征态,在定
7、态下,一切显含时间的力学量(不管是否为守恒量)的平均值和几率分布都不随时间改变,粒子在空间的几率密度和几率流密度也不随时间改变。第三章算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。厄密算符的定义:如果算符满足下列等式,则称为厄密算符。式中和为任意波函数,x代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。简并:对应于一个本征值有一个以上本征函数的情况。 简并度:对应于同一个本征值的本征函数的数目。氢原子的电离态
8、:氢原子中的电子脱离原子的束缚,成为自由电子的状态。电离能:电离态与基态能量之差氢原子中在半径r到r+dr的球壳内找到电子的概率是: 在方向(,)附近立体角d内的概率是:两函数1和2正交的条件是:式中积分是对变量变化的全部区域进行的,则称函数1和2相互正交。正交归一系:满足正交条件的归一化本征函数k或l。 厄密算符本征波函数的完全性:如果n(r)是厄密算符的正交归一本征波函数,n是本征值,则任一波函数(r)可以按n(r)展开为级数的性质。或者说n(r)组成完全系。算符与力学量的关系:当体系处于算符的本征态时,力学量F有确定值,这个值就是算符在态中的本征值。力学量在一般的状态中没有确定的数值,而
9、有一系列的可能值,这些可能值就是表示这个力学量的算符的本征值。每个可能值都以确定的几率出现。算符对易关系: 。可对易算符:如果,则称算符与是可对易的;不对易算符:如果,则称算符与是不对易的。两力学量同时有确定值的条件:定理1:如果两个算符有一组共同本征函数n,而且n组成完全系,则算符对易。 定理2:如果两个算符对易,则这两个算符有组成完全系的共同本征函数。 测不准关系:当两个算符不对易时,它们不能同时有确定值,量子力学中力学量运动守恒定律形式是: 量子力学中的能量守恒定律形式是:空间反演:把一个波函数的所有坐标自变量改变符号(如rr)的运算。宇称算符:表示空间反演运算的算符。宇称守恒:体系状态
10、的宇称不随时间改变。16.相关关系式:, 第四章基底:设 e1, e2, e3 为线性无关的三个向量,空间内任何向量 v 必是e1, e2, e3 的线性组合,则e1, e2, e3 称为空间的基底。正交规范基底:若基底的向量互相垂直,且每一向量的长度等于1,这样的基底叫做正交规范基底。希耳伯特空间:如果把本征波函数m看成类似于几何学中的一个矢量(这就是波函数有时称为态矢量或态矢的原因),则波函数的集合m构成的一个线性空间。表象:量子力学中,态和力学量的具体表示方式。第五章1.斯塔克效应:在外电场中,原子光谱产生分裂的现象。2.分别写出非简并态的一级、二级能量修正表达式。3.周期微扰产生跃迁的
11、条件是:,说明只有当外界微扰含有频率时,体系才能从态跃迁到态,这时体系吸收或发射的能量是,这表明周期微扰产生的跃迁是一个共振跃迁。4.光的吸收现象:在光的照射下,原子可能吸收光的能量由较低的能级跃迁到较高的能级的现象。5.原子的受激辐射(跃迁)现象:在光的照射下,原子从较高的能级跃迁到较低的能级而放出光的现象。6.原子的自发辐射(跃迁)现象:在无光照射时,处于激发态的原子跃迁到较低能级而发光的现象。7.自发发射系数:表示原子在单位时间内,由能级自发跃迁到能级,并发射出能量为的光子的几率。8.受激发射系数:作用于原子的光波在频率范围内的能量密度是,则在单位时间内,原子由能级受激跃迁到能级、并发射
12、出能量为的光子的几率是。9.吸收系数:原子由低能级跃迁到高能级、并吸收能量为的光子的几率是。第七章斯特恩-革拉赫实验证明电子存在自旋理由。塞曼效应:在外磁场中,每一条光谱线劈裂成一组相邻谱线的现象。简单(正常)塞曼效应:无外磁场时的一条光谱线,在磁场中将分裂为三条光谱线。产生的条件是:当外磁场足够大时,自旋和轨道运动间相互作用可以忽略。复杂(反常)塞曼效应:无外磁场时的一条光谱线,在磁场中将分裂为更多条光谱线。产生的条件是:在弱外磁场中,必须考虑自旋和轨道运动间相互作用。两个电子自旋角动量耦合的自旋总角动量S:,所以两个电子自旋角动量耦合的自旋总角动量只能有两个可能值。两个电子轨道角动量耦合的
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 量子力学 知识点 小结