立体几何知识点总结.doc
《立体几何知识点总结.doc》由会员分享,可在线阅读,更多相关《立体几何知识点总结.doc(12页珍藏版)》请在沃文网上搜索。
1、立体几何知识点整理 一 直线和平面的三种位置关系:1. 线面平行 符号表示: 2. 线面相交 符号表示: 3. 线在面内符号表示: 二 平行关系:1. 线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。方法三:用线面垂直实现。 若,则。方法四:用向量方法: 若向量和向量共线且l、m不重合,则。2. 线面平行:方法一:用线线平行实现。方法二:用面面平行实现。方法三:用平面法向量实现。若为平面的一个法向量,且,则。3. 面面平行:方法一:用线线平行实现。方法二:用线面平行实现。三垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。方法二:用面面垂直实现。2. 面面垂直: 方法一:用线面
2、垂直实现。方法二:计算所成二面角为直角。3. 线线垂直: 方法一:用线面垂直实现。方法二:三垂线定理及其逆定理。方法三:用向量方法: 若向量和向量的数量积为0,则。三 夹角问题。(一) 异面直线所成的角:(1) 范围:(2)求法:方法一:定义法。步骤1:平移,使它们相交,找到夹角。步骤2:解三角形求出角。(常用到余弦定理)余弦定理:(计算结果可能是其补角)方法二:向量法。转化为向量的夹角(计算结果可能是其补角):(二) 线面角(1)定义:直线l上任取一点P(交点除外),作PO于O,连结AO,则AO为斜线PA在面内的射影,(图中)为直线l与面所成的角。(2)范围: 当时,或当时,(3)求法:方法
3、一:定义法。步骤1:作出线面角,并证明。步骤2:解三角形,求出线面角。(三) 二面角及其平面角(1)定义:在棱l上取一点P,两个半平面内分别作l的垂线(射线)m、n,则射线m和n的夹角为二面角l的平面角。(2)范围: (3)求法:方法一:定义法。步骤1:作出二面角的平面角(三垂线定理),并证明。步骤2:解三角形,求出二面角的平面角。方法二:截面法。步骤1:如图,若平面POA同时垂直于平面,则交线(射线)AP和AO的夹角就是二面角。步骤2:解三角形,求出二面角。方法三:坐标法(计算结果可能与二面角互补)。步骤一:计算步骤二:判断与的关系,可能相等或者互补。四 距离问题。1点面距。方法一:几何法。
4、步骤1:过点P作PO于O,线段PO即为所求。步骤2:计算线段PO的长度。(直接解三角形;等体积法和等面积法;换点法)2线面距、面面距均可转化为点面距。3异面直线之间的距离方法一:转化为线面距离。如图,m和n为两条异面直线,且,则异面直线m和n之间的距离可转化为直线m与平面之间的距离。方法二:直接计算公垂线段的长度。方法三:公式法。如图,AD是异面直线m和n的公垂线段,则异面直线m和n之间的距离为: 4 / 12高考题典例考点1 点到平面的距离例1如图,正三棱柱的所有棱长都为,为中点()求证:平面;()求二面角的大小;()求点到平面的距离ABCDOF考点2 异面直线的距离例2 已知三棱锥,底面是
5、边长为的正三角形,棱的长为2,且垂直于底面.分别为的中点,求CD与SE间的距离.考点3 直线到平面的距离BACDOGH例3 如图,在棱长为2的正方体中,G是的中点,求BD到平面的距离考点4 异面直线所成的角例4如图,在中,斜边可以通过以直线为轴旋转得到,且二面角的直二面角是的中点(I)求证:平面平面;(II)求异面直线与所成角的大小考点5 直线和平面所成的角例5. 四棱锥中,底面为平行四边形,侧面底面已知,()证明;()求直线与平面所成角的大小考点6 二面角例6如图,已知直二面角,ABCQP,直线和平面所成的角为(I)证明(II)求二面角的大小考点7 利用空间向量求空间距离和角例7 如图,已知
6、是棱长为的正方体,点在上,点在上,且(1)求证:四点共面; (2)若点在上,点在上,垂足为,求证:平面; (3)用表示截面和侧面所成的锐二面角的大小,求常用结论1证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.2证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.3证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.4证明直线与直线的垂直的思考途径:(1)转化为相交
7、垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.5证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.6证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直.7.夹角公式 :设a,b,则cosa,b=.8异面直线所成角:=(其中()为异面直线所成角,分别表示异面直线的方向向量)9.直线与平面所成角:(为平面的法向量).10、空间四
8、点A、B、C、P共面,且 x + y + z = 111.二面角的平面角或(,为平面,的法向量).12.三余弦定理:设AC是内的任一条直线,且BCAC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为则.13.空间两点间的距离公式 若A,B,则=.14.异面直线间的距离: (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).15.点到平面的距离:(为平面的法向量,是经过面的一条斜线,).16.三个向量和的平方公式:17. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有.(立体几何中长方体对角线长的公式是其特例).18. 面积射影定理
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 知识点 总结