小学数学教师招聘考试专业知识整理.doc
《小学数学教师招聘考试专业知识整理.doc》由会员分享,可在线阅读,更多相关《小学数学教师招聘考试专业知识整理.doc(51页珍藏版)》请在沃文网上搜索。
1、数学教师招聘考试 专业知识复习一、复习要求(由于招考题目仅为高考知识,所以本内容以均为高考知识点)1、 理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、 掌握含绝对值不等式及一元二次不等式的解法;3、 理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、 理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系; 5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。二、学习指导 1、集合的概念:(1) 集合中元素特征,确定性,互异性,无序性;(2) 集合的分类: 按元素个数分:有限集,无限集; 按元素特征分;数集,点集。如数集y|y=x2,表示非负实数
2、集,点集(x,y)|y=x2表示开口向上,以y轴为对称轴的抛物线;(3) 集合的表示法: 列举法:用来表示有限集或具有显著规律的无限集,如N+=0,1,2,3,;描述法。2、两类关系:(1) 元素与集合的关系,用或表示; (2)集合与集合的关系,用,=表示,当AB时,称A是B的子集;当AB时,称A是B的真子集。3、集合运算 (1)交,并,补,定义:AB=x|xA且xB,AB=x|xA,或xB,CUA=x|xU,且xA,集合U表示全集;(2) 运算律,如A(BC)=(AB)(AC),CU(AB)=(CUA)(CUB),CU(AB)=(CUA)(CUB)等。 4、命题:(1) 命题分类:真命题与假
3、命题,简单命题与复合命题;(2) 复合命题的形式:p且q,p或q,非p; (3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。 (3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p“,逆否命题为”若非q则非p“。其中互为逆否的两个命题同真假,即等价。因此,四种命题为真的个数只能是偶数个。5、 充分条件与必要条件 (1)定义:对命题“若p则q”而言,当它是真命题时,p是q的充分条件,q是p的必要条件,当它的逆
4、命题为真时,q是p的充分条件,p是q的必要条件,两种命题均为真时,称p是q的充要条件; (2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。从集合角度看,若记满足条件p的所有对象组成集合A,满足条件q的所有对象组成集合q,则当AB时,p是q的充分条件。BA时,p是q的充分条件。A=B时,p是q的充要条件;(3) 当p和q互为充要时,体现了命题等价转换的思想。6、 反证法是中学数学的重要方法。会用反证法证明一些代数命题。 7、集合概念及其基本理论是近代数学最基本的内容之一。学
5、会用集合的思想处理数学问题。三、典型例题 例1、已知集合M=y|y=x2+1,xR,N=y|y=x+1,xR,求MN。解题思路分析:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M、N均为数集,不能误认为是点集,从而解方程组。其次要化简集合,或者说使集合的特征明朗化。M=y|y=x2+1,xR=y|y1,N=y|y=x+1,xR=y|yR MN=M=y|y1说明:实际上,从函数角度看,本题中的M,N分别是二次函数和一次函数的值域。一般地,集合y|y=f(x),xA应看成是函数y=f(x)的值域,通过求函数值域化简集合。此集合与集合(x,y)|y=x2+1,xR是有本质差异的,后者是点
6、集,表示抛物线y=x2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例y|y1=x|x1。例2、已知集合A=x|x2-3x+2=0,B+x|x2-mx+2=0,且AB=B,求实数m范围。解题思路分析:化简条件得A=1,2,AB=BBA根据集合中元素个数集合B分类讨论,B=,B=1或2,B=1,2当B=时,=m2-80 当B=1或2时,m无解当B=1,2时, m=3综上所述,m=3或说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B=1或2时,不能遗漏=0。例3、用反证法证明:已知x、yR,x+y2,求 证x、y中至少有一个大于1。
7、解题思路分析:假设x1且y1,由不等式同向相加的性质x+y2与已知x+y2矛盾 假设不成立 x、y中至少有一个大于1说明;反证法的理论依据是:欲证“若p则q”为真,先证“若p则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p则非q”为假时,“若p则q”一定为真。例4、若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件。解题思路分析:利用“”、“”符号分析各命题之间的关系 DCBA DA,D是A的充分不必要条件说明:符号“”、“”具有传递性,不过前者是单方向的,后者是双方向的。例5、求直线l:ax-y+b=0经过
8、两直线l1:2x-2y-3=0和l2:3x-5y+1=0交点的充要条件。解题思路分析:从必要性着手,分充分性和必要性两方面证明。由 得l1,l2交点P() l过点P 17a+4b=11充分性:设a,b满足17a+4b=11 代入l方程:整理得:此方程表明,直线l恒过两直线的交点()而此点为l1与l2的交点 充分性得证 综上所述,命题为真说明:关于充要条件的证明,一般有两种方式,一种是利用“”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性。四、同步练习(一) 选择题1、 设M=x|x2+x+2=0,a=lg(lg10),则a与M的关系是A、a=M
9、B、Ma C、aM D、Ma2、 已知全集U=R,A=x|x-a|2,B=x|x-1|3,且AB=,则a的取值范围是A、 0,2 B、(-2,2) C、(0,2 D、(0,2)3、 已知集合M=x|x=a2-3a+2,aR,N、x|x=b2-b,bR,则M,N的关系是A、 MN B、MN C、M=N D、不确定 4、设集合A=x|xZ且-10x-1,B=x|xZ,且|x|5,则AB中的元素个数是A、11 B、10 C、16 D、155、集合M=1,2,3,4,5的子集是A、15 B、16 C、31 D、326、对于命题“正方形的四个内角相等”,下面判断正确的是 A、所给命题为假 B、它的逆否命
10、题为真C、它的逆命题为真 D、它的否命题为真7、“”是coscos”的A、充分不必要条件 B、必要不充分条件C、充要条件 D、既不充分也不必要条件 8、集合A=x|x=3k-2,kZ,B=y|y=3l+1,lZ,S=y|y=6m+1,mZ之间的关系是A、SBA B、S=BA C、SB=A D、SB=A9、方程mx2+2x+1=0至少有一个负根的充要条件是A、0m1或m0 B、0m1C、m1 D、m110、已知p:方程x2+ax+b=0有且仅有整数解,q:a,b是整数,则p是q的A、充分不必要条件 B、必要不充分条件充要条件 D、既不充分又不必要条件(二) 填空题11、 已知M=,N=x|,则M
11、N=_。 12、在100个学生中,有乒乓球爱好者60人,排球爱好者65人,则两者都爱好的人数最少是_人。13、 关于x的方程|x|-|x-1|=a有解的充要条件是_。14、 命题“若ab=0,则a、b中至少有一个为零”的逆否命题为_。15、 非空集合p满足下列两个条件:(1)p1,2,3,4,5,(2)若元素ap,则6-ap,则集合p个数是_。(三) 解答题16、 设集合A=(x,y)|y=ax+1,B=(x,y)|y=|x|,若AB是单元素集合,求a取值范围。17、 已知抛物线C:y=-x2+mx-1,点M(0,3),N(3,0),求抛物线C与线段MN有两个不同交点的充要条件。18、 设A=
12、x|x2+px+q=0,M=1,3,5,7,9,N=1,4,7,10,若AM=,AN=A,求p、q的值。19、 已知,b=2-x,c=x2-x+1,用反证法证明:a、b、c中至少有一个不小于1。函 数一、复习要求7、 函数的定义及通性;2、函数性质的运用。二、学习指导 1、函数的概念: (1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f:AB,f表示对应法则,b=f(a)。若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。既是单射又是满射的映射称为一一映射。 (2)函数定义:函数就是定
13、义在非空数集A,B上的映射,此时称数集A为定义域,象集C=f(x)|xA为值域。定义域,对应法则,值域构成了函数的三要素,从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。逆过来,值域也会限制定义域。求函数定义域,通过解关于自变量的不等式(组)来实现的。要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。理解函数定义域,应紧密联系对应法则。函数定义域是研究函数性质的基础和前提。函数对应法则通常表现为表格,解析式和图象。其中解析式是最常见的表现形式。求已知类型函数解析式的方
14、法是待定系数法,抽象函数的解析式常用换元法及凑合法。求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。2、函数的通性 (1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如,(f(x)0)。奇偶性的几何意义是两种特殊的图象对称。函数的奇偶性是定义域上的普
15、遍性质,定义式是定义域上的恒等式。利用奇偶性的运算性质可以简化判断奇偶性的步骤。 (2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。判断函数单调性的方法:定义法,即比差法;图象法;单调性的运算性质(实质上是不等式性质);复合函数单调性判断法则。函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式。函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。 (3)周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。求周期的重要方法:定义法;公式法;图象法;利用重要结论:若函数f(x)满足f(a-x)=f
16、(a+x),f(b-x)=f(b+x),ab,则T=2|a-b|。 (4)反函数:函数是否是有反函数是函数概念的重要运用之一,在求反函数之前首先要判断函数是否具备反函数,函数f(x)的反函数f-1(x)的性质与f(x)性质紧密相连,如定义域、值域互换,具有相同的单调性等,把反函数f-1(x)的问题化归为函数f(x)的问题是处理反函数问题的重要思想。设函数f(x)定义域为A,值域为C,则 f-1f(x)=x,xA ff-1(x)=x,xC8、 函数的图象函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工具作用。图象作法:描点法;图象变换。应掌握常见的图
17、象变换。4、本单常见的初等函数;一次函数,二次函数,反比例函数,指数函数,对数函数。在具体的对应法则下理解函数的通性,掌握这些具体对应法则的性质。分段函数是重要的函数模型。对于抽象函数,通常是抓住函数特性是定义域上恒等式,利用赋值法(变量代换法)解题。联系到具体的函数模型可以简便地找到解题思路,及解题突破口。应用题是函数性质运用的重要题型。审清题意,找准数量关系,把握好模型是解应用题的关键。5、主要思想方法:数形结合,分类讨论,函数方程,化归等。三、典型例题 例1、已知,函数y=g(x)图象与y=f-1(x+1)的图象关于直线y=x对称,求g(11)的值。分析:利用数形对应的关系,可知y=g(
18、x)是y=f-1(x+1)的反函数,从而化g(x)问题为已知f(x)。 y=f-1(x+1) x+1=f(y) x=f(y)-1 y=f-1(x+1)的反函数为y=f(x)-1即 g(x)=f(x)-1 g(11)=f(11)-1=评注:函数与反函数的关系是互为逆运算的关系,当f(x)存在反函数时,若b=f(a),则a=f-1(b)。例2、设f(x)是定义在(-,+)上的函数,对一切xR均有f(x)+f(x+2)=0,当-1x1时,f(x)=2x-1,求当1x3时,函数f(x)的解析式。解题思路分析:利用化归思想解题 f(x)+f(x+2)=0 f(x)=-f(x+2) 该式对一切xR成立 以
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 数学教师 招聘 考试 专业知识 整理