第四讲 一元二次方程与二次函数(含答案).doc
《第四讲 一元二次方程与二次函数(含答案).doc》由会员分享,可在线阅读,更多相关《第四讲 一元二次方程与二次函数(含答案).doc(14页珍藏版)》请在沃文网上搜索。
1、中考数学重难点专题讲座第四讲 一元二次方程与二次函数【前言】前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。 一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在
2、后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。第一部分 真题精讲【例1】2010,西城,一模已知:关于的方程求证:取任何实数时,方程总有实数根;若二次函数的图象关于轴对称求二次函数的解析式;已知一次函数,证明:在实数范围内,对于的同一个值,这两个函数所对应的函数值均成立;在条件下,若二次函数的图象经过点,且在实数范围内,对于的同一个值,这三个函数所对应的函数值,均成立,求二次函数的解析式【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。由于并未说明该方程是否是一元二次方程,所
3、以需要讨论M=0和M0两种情况,然后利用根的判别式去判断。第二问的第一小问考关于Y轴对称的二次函数的性质,即一次项系数为0,然后求得解析式。第二问加入了一个一次函数,证明因变量的大小关系,直接相减即可。事实上这个一次函数恰好是抛物线的一条切线,只有一个公共点(1,0)。根据这个信息,第三问的函数如果要取不等式等号,也必须过该点。于是通过代点,将用只含a的表达式表示出来,再利用,构建两个不等式,最终分析出a为何值时不等式取等号,于是可以得出结果.【解析】解:(1)分两种情况:当时,原方程化为,解得, (不要遗漏)当,原方程有实数根. 当时,原方程为关于的一元二次方程, . 原方程有两个实数根.
4、(如果上面的方程不是完全平方式该怎样办?再来一次根的判定,让判别式小于0就可以了,不过中考如果不是压轴题基本判别式都会是完全平方式,大家注意就是了) 综上所述,取任何实数时,方程总有实数根. (2)关于的二次函数的图象关于轴对称,.(关于Y轴对称的二次函数一次项系数一定为0).抛物线的解析式为. ,(判断大小直接做差)(当且仅当时,等号成立). (3)由知,当时,.、的图象都经过. (很重要,要对那个等号有敏锐的感觉)对于的同一个值,的图象必经过. 又经过,. (巧妙的将表达式化成两点式,避免繁琐计算)设.对于的同一个值,这三个函数所对应的函数值均成立,.又根据、的图象可得 ,.(a0时,顶点
5、纵坐标就是函数的最小值). .而.只有,解得.抛物线的解析式为. 【例2】2010,门头沟,一模关于的一元二次方程.(1)当为何值时,方程有两个不相等的实数根;(2)点是抛物线上的点,求抛物线的解析式;(3)在(2)的条件下,若点与点关于抛物线的对称轴对称,是否存在与抛物线只交于点的直线,若存在,请求出直线的解析式;若不存在,请说明理由.【思路分析】第一问判别式依然要注意二次项系数不为零这一条件。第二问给点求解析式,比较简单。值得关注的是第三问,要注意如果有一次函数和二次函数只有一个交点,则需要设直线y=kx+b以后联立,新得到的一元二次方程的根的判别式是否为零,但是这样还不够,因为y=kx+
6、b的形式并未包括斜率不存在即垂直于x轴的直线,恰恰这种直线也是和抛物线仅有一个交点,所以需要分情况讨论,不要遗漏任何一种可能.【解析】:(1)由题意得 解得 解得 当且时,方程有两个不相等的实数根. (2)由题意得 解得(舍) (始终牢记二次项系数不为0) (3)抛物线的对称轴是 由题意得 (关于对称轴对称的点的性质要掌握) 与抛物线有且只有一个交点 (这种情况考试中容易遗漏) 另设过点的直线() 把代入,得, 整理得有且只有一个交点, 解得 综上,与抛物线有且只有一个交点的直线的解析式有,【例3】已知P()和Q(1,)是抛物线上的两点(1)求的值;(2)判断关于的一元二次方程=0是否有实数根
7、,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值【思路分析】 拿到题目,很多同学不假思索就直接开始代点,然后建立二元方程组,十分麻烦,计算量大,浪费时间并且可能出错。但是仔细看题,发现P,Q纵坐标是一样的,说明他们关于抛物线的对称轴对称。而抛物线只有一个未知系数,所以轻松写出对称轴求出b。 第二问依然是判别式问题,比较简单。第三问考平移,也是这类问题的一个热点,在其他区县的模拟题中也有类似的考察。考生一定要把握平移后解析式发生的变化,即左加右减(单独的x),上加下减(表达式整体)然后求出结果。【解析】(1)因为点P
8、 、Q在抛物线上且纵坐标相同,所以P、Q关于抛物线对称轴对称并且到对称轴距离相等所以,抛物线对称轴,所以,(2)由(1)可知,关于的一元二次方程为=0因为,=168=80所以,方程有两个不同的实数根,分别是 ,(3)由(1)可知,抛物线的图象向上平移(是正整数)个单位后的解析式为若使抛物线的图象与轴无交点,只需 无实数解即可由=0,得又是正整数,所以得最小值为2【例4】2010,昌平,一模已知抛物线,其中是常数(1)求抛物线的顶点坐标;(2)若,且抛物线与轴交于整数点(坐标为整数的点),求此抛物线的解析式【思路分析】本题第一问较为简单,用直接求顶点的公式也可以算,但是如果巧妙的将a提出来,里面
9、就是一个关于X的完全平方式,从而得到抛物线的顶点式,节省了时间.第二问则需要把握抛物线与X轴交于整数点的判别式性质.这和一元二次方程有整数根是一样的.尤其注意利用题中所给,合理变换以后代入判别式,求得整点的可能取值.(1)依题意,得, 抛物线的顶点坐标为 (2)抛物线与轴交于整数点,的根是整数是整数,是整数 是整数的完全平方数, (很多考生想不到这种变化而导致后面无从下手)取1,4,当时,; 当时, 的值为2或 抛物线的解析式为或【例5】2010,平谷,一模已知:关于的一元二次方程(为实数)(1)若方程有两个不相等的实数根,求的取值范围;(2)在(1)的条件下,求证:无论取何值,抛物线总过轴上
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四讲 一元二次方程与二次函数含答案 第四 一元 二次方程 二次 函数 答案