离散数学讲义.ppt
《离散数学讲义.ppt》由会员分享,可在线阅读,更多相关《离散数学讲义.ppt(21页珍藏版)》请在沃文网上搜索。
1、1.3命题逻辑等值演算命题逻辑等值演算 等值式等值式基本等值式基本等值式等值演算等值演算置换规则置换规则1鬼谷子问徒鬼谷子问徒 n孙膑,庞涓都是鬼谷子的徒弟。一天鬼谷子出了这道题目:他从2到99中选出两个不同的整数,把积告诉孙,把和告诉庞。n庞说:我虽然不能确定这两个数是什么,但是我肯定你也不知道这两个数是什么。n孙说:我本来的确不知道,但是听你这么一说,我现在能够确定这两个数字了。n庞说:既然你这么说,我现在也知道这两个数字是什么了。n请问这两个数字是什么?为什么?2等值式等值式 定义定义若等价式若等价式AB是重言式,则称是重言式,则称A与与B等值等值,记作记作AB,并称并称AB是是等值式等
2、值式说明:定义中,说明:定义中,A,B,均为元语言符号均为元语言符号,A或或B中中可能有哑元出现可能有哑元出现.例如,在例如,在(pq)(p q)(r r)中,中,r为左边为左边公式的哑元公式的哑元.用真值表可验证两个公式是否等值用真值表可验证两个公式是否等值请验证:请验证:p(qr)(p q)r p(qr)(pq)r3基本等值式基本等值式 双重否定律双重否定律:AA等幂律等幂律:A AA,A AA交换律交换律:A BB A,A BB A结合律结合律:(A B)CA(B C)(A B)CA(B C)分配律分配律:A(B C)(A B)(A C)A(B C)(A B)(A C)4基本等值式基本等
3、值式(续续)德德摩根律摩根律 :(A B)AB(A B)AB吸收律吸收律:A(A B)A,A(A B)A零律零律:A 11,A 00同一律同一律:A 0A,A 1A排中律排中律:AA1矛盾律矛盾律:AA05基本等值式基本等值式(续续)蕴涵等值式蕴涵等值式:ABA B等价等值式等价等值式:AB(AB)(BA)假言易位假言易位:ABBA等价否定等值式等价否定等值式:ABAB归谬论归谬论:(AB)(AB)A注意注意:A,B,C代表任意的命题公式代表任意的命题公式牢记这些等值式是继续学习的基础牢记这些等值式是继续学习的基础6等值演算与置换规则等值演算与置换规则 等值演算等值演算:由已知的等值式推演出新
4、的等值式的过程由已知的等值式推演出新的等值式的过程置换规则置换规则:若:若AB,则则(B)(A)等值演算的基础:等值演算的基础:(1)等值关系的性质:自反、对称、传递等值关系的性质:自反、对称、传递(2)基本的等值式基本的等值式(3)置换规则置换规则7应用举例应用举例证明两个公式等值证明两个公式等值 例例1证明证明p(qr)(p q)r证证p(qr)p(q r)(蕴涵等值式,置换规则)蕴涵等值式,置换规则)(pq)r(结合律,置换规则)结合律,置换规则)(p q)r(德摩根律,置换规则)德摩根律,置换规则)(p q)r(蕴涵等值式,置换规则)蕴涵等值式,置换规则)说明说明:也可以从右边开始演算
5、(请做一遍)也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出因为每一步都用置换规则,故可不写出 熟练后,基本等值式也可以不写出熟练后,基本等值式也可以不写出 8应用举例应用举例证明两个公式不等值证明两个公式不等值例例2证明证明:p(qr)(pq)r用等值演算不能直接证明两个公式不等值用等值演算不能直接证明两个公式不等值,证明两证明两个公式不等值的基本思想是找到一个赋值使一个成个公式不等值的基本思想是找到一个赋值使一个成真真,另一个成假另一个成假.方法一方法一真值表法(自己证)真值表法(自己证)方法二方法二观察赋值法观察赋值法.容易看出容易看出000,010等是左边的等是左边的
6、成真赋值,是右边的成假赋值成真赋值,是右边的成假赋值.方法三方法三用等值演算先化简两个公式,再观察用等值演算先化简两个公式,再观察.9应用举例应用举例判断公式类型判断公式类型 例例3 3用等值演算法判断下列公式的类型用等值演算法判断下列公式的类型(1)q(pq)解解 q(pq)q(p q)(蕴涵等值式)蕴涵等值式)q(pq)(德摩根律)德摩根律)p(qq)(交换律,结合律)交换律,结合律)p 0(矛盾律)矛盾律)0(零律)(零律)由最后一步可知,该式为矛盾式由最后一步可知,该式为矛盾式.10例例3(续续)(2)(pq)(qp)解解(pq)(qp)(p q)(qp)(蕴涵等值式)蕴涵等值式)(p
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
免费下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散数学 讲义