流体力学总复习.doc
《流体力学总复习.doc》由会员分享,可在线阅读,更多相关《流体力学总复习.doc(74页珍藏版)》请在沃文网上搜索。
1、流体力学总复习第1章、流体的定义与物理性质一、主要内容1.1、流体的定义:流体是一种受任何微小的剪切力作用时,都会产生连续变形的物质。能够流动的物体称为流体,包括气体和液体。1.2、流体力学的研究对象:流体力学是以流体为研究对象,研究流体处于平衡和运动状态时的力学规律(如:压力与速度分布等),以及流体与固体的相互作用及流动过程中的能量损失。 本章的主要内容可以总结为三个三:这就是三个基本特征;三个基本特性;三个力学模型。1.3、流体的三个基本特征:1.3.1、易流性:流动性是流体的主要特征。组成流体的各个微团之间的内聚力很小,任何微小的剪切力都会使它产生变形,(发生连续的剪切变形)流动。 1.
2、3.2、形状不定性:流体没有固定的形状,取决于盛装它的容器的形状,只能被限定为其所在容器的形状。1.3.3、绵续性:流体能承受压力,但不能承受拉力,对切应力的抵抗较弱,只有在流体微团发生相对运动时,才显示其剪切力。因此,流体没有静摩擦力。 1.4、三个基本特性1.4.1、流体的惯性:物质维持原有运动状态的特性称为惯性,它是物质本身固有的属性,运动状态的任何变化都必须克服惯性的作用。衡量惯性大小的物理量是质量,也可以用单位体积的质量即密度表示。(1)、流体的密度:流体的密度是指单位体积的流体的质量。(2)、流体的比容:流体的比容是指单位质量流体的体积。(3)、流体的重度:流体的重度是指单位体积的
3、流体所具有的重量(所受的重力)。(4)、流体的比重:流体的比重是指流体的重量与温度为时同体积蒸馏水的重量之比,无量纲。(5)、混合气体的密度:混合气体的密度可按各组份气体所占体积百分数计算。 1.4.2、流体的压缩性与膨胀性:(1)、流体的压缩性:流体的体积随压力变化的特性称为流体的压缩性。压缩性的大小用压缩系数来度量。即: 或: 压缩系数的倒数称为体积模量(或弹性系数),即: 体积模量物理意义是压缩单位体积的流体所需要做的功,它表示了流体反抗压缩的能力。值越大,说明流体越难压缩。(2)、流体的膨胀性:流体的体积随温度变化的特性称为膨胀性。膨胀性的大小用体膨胀系数来度量,即:1.4.3、流体的
4、粘性:(1)、流体的粘性:粘性是流体阻止其发生剪切变形的一种特性,是由流体分子的结构及分子间的相互作用力所引起的。流体的粘性是流体的固有属性。(2)、牛顿内摩擦定律:A)流体的内摩擦切应力:当相邻两层流体发生相对运动时,各层流体之间将因其粘性而产生摩擦力(剪切力),摩擦应力的大小为:切应力是粘性的客观表现。速度梯度和流体的变形密切相关,速度梯度愈大,变形愈快,粘性力愈大。B)牛顿通过实验证明:内磨擦力的大小与两层之间的速度差及流层接触面积的大小成正比,而与流层之间的距离成反比,即:(3)、粘度:流体粘性的大小用粘度来表示,粘度是流体粘性的度量,它是流体温度和压力的函数。A)动力粘度:是指速度梯
5、度为时的流层单位面积上的内磨擦力。动力粘度表征了流体抵抗变形的能力,即流体粘性的大小。它是与流体的种类、温度和压强有关的比例系数,在一定温度和压强下,它是个常数。它的单位为;B)运动粘度:工程中还常用动力粘度和流体密度的比值来表示粘度,称为动力粘度,单位是。(4)温度对粘性的影响:温度对液体和气体粘性的影响截然不同。温度升高时,液体的粘性降低。温度升高时,气体的粘性增加。1.5、三个力学模型1.5.1、连续介质模型:流体由大量的分子组成。当从宏观角度来研究流体的机械运动,而不涉及微观的物质结构时,就可以认为流体是由无穷多个连续分布的流体微团组成的连续介质。这种流体微团虽小,但却包含着为数甚多的
6、分子,并具有一定的体积和质量,一般将这种微团称为质点。连续介质中,质点间没有空隙,质点本身的几何尺寸,相对于流体空间或流体中的固体而言,可忽略不计,并设质点均质地分布在连续介质之中。流体的这种“连续介质模型”的建立,是对流体物质结构的简化,为研究流体力学提供了很大的方便。根据流体的连续介质模型,任意时刻流动空间的任一点都为相应的流体质点占据,表征流体性质和运动特性的物理量一般为时间和空间的连续函数,就可以应用数学分析中连续函数这一有力工具来分析和解决流体力学问题。1.5.2、不可压缩流体模型:通常把液体视为不可压缩流体,即忽略在一般工程中没有多大影响的微小的体积变化,而把液体的密度视为常量。通
7、常把气体作为可压缩流体来处理,特别是在流速较高、压强变化较大的场合,它们的体积的变化是不容忽视的,必须把它们的密度视为变量。1.5.3、理想流体模型:理想流体就是完全没有粘性的流体。实际流体都具有粘性,称为粘性流体。当分析比较复杂的流动时;若考虑粘性,必将给分析研究带来很大的困难,有时甚至无法进行。为此,引入一个所谓理想流体模型,将复杂的流动问题简化。二、本章难点:1、三个基本特征中的流体形状的的不定性,要注意区分液体与气体的区别。液体具有一定的体积,有一自由表面;而气体没有固定体积,没有自由表面,易于压缩。2、温度对流体的粘性影响,对于液体和气体是截然不同的,温度升高时,液体的粘性降低,而气
8、体的粘性增加。3、连续介质模型的主要内容是:由大量的分子组成的流体,分子与分子间是有间隙的;而由大量的流体微团(包含有许多流体分子)组成的流体,微团与微团间是没有间隙的。4、在压力不是很高,速度不是很快的情况下,气体也可看成是不可压缩流体。第二章、流体静力学一、主要内容2.1、流体的平衡包括两种情况:一种是流体相对于地球没有运动,称为静止状态;另一种是容器有运动而流体相对于容器静止,称为相对平衡状态。流体静力学研究在外力作用下处于平衡的流体的力学规律及其应用。2.2、作用于流体上的力作用于流体上的力按其性质可分为表面力和质量力两类。2.2.1、质量力:是指作用在流体每个质点上的力(受某种力埸作
9、用而产生的),它的大小与流体的质量成正比。 2.2.2、表面力:是指作用在所研究的流体表面上的力,其大小与受力表面的面积成正比。表面力可分成两类:一种是沿表面内法向的压强,另一种是沿表面切线方向的摩擦力,也就是粘性力。2.3、流体的静压强及其特性当流体处于静止或相对静止时,流体的压强称为流体静压强。流体的静压强具有两个重要特性:特性一:流体静压强的作用方向总是沿其作用面的内法线方向。特性二:在静止流体中任意一点上的压强与作用的方位无关,其值均相等。2.4、流体静力学基本方程2.4.1、平衡微分方程式: 2.4.2、压差公式: 2.4.3、力的势函数:;重力场中,平衡流体的质量力势函数为: 2.
10、4.4、流体静力学基本方程2.4.5、静力学基本方程的能量意义及几何意义:流体静力学基本方程的物理意义是,在不可压静止流体中,任何点的单位重量流体的总势能守恒,从几何上说,静水头线为水平线。2.4.6、帕斯卡原理:液面压强等值地在流体内部传递的原理称为帕斯卡原理(Pascals law)。2.5、等压面及其特性2.5.1、等压面的定义:在平衡流体中,压强相等的各点所组成的面称为等压面。2.5.2、等压面微分方程: 2.5.3、等压面的特性:特性一:作用于平衡流体中任一点的质量力,必然垂直于通过该点的等压面。特性二:当两种互不相混的液体处于平衡时,它们的分界面必为等压面。推论:若平衡流体的质量力
11、仅为重力,则:(1)静止流体的自由表面为等压面,并为一平面。(2)自由表面下任意深度的水平面均为等压面。(3)压强分布与容器的形状无关,(连通器)相连通的同一种流体在同一高度上的压强相等,为一等压面。2.6、压强的测量2.6.1、压强的计量标准绝对压强:是以完全真空为基准计量的压强。相对压强:是以当地大气压为基准计量的压强。如果某点的绝对压强的数值比当地大气压低,则其相对压强将是负值,这时的相对压强称为真空。2.6.2、压强的计量单位:(1)应力单位: (2)液柱高度: (3)大气压单位: 2.6.3、液柱式测压计2.7、流体的相对平衡:所谓液体的相对平衡,就是指液体质点之间虽然没有相对运动,
12、但盛装液体的容器却对地面上的固定坐标系有相对运动时的平衡。2.7.1、等加速直线运动的容器中的流体平衡:(1)流体静压力分布规律: (2)等压面方程: (3)自由液面与轴方向的倾角为: 2.7.2、等速旋转运动的容器中的流体平衡:(1)流体静压力的分布规律:(2)等压面方程:(3)自由表面方程为: 2.8、静止液体对壁面的作用力:2.8.1、静止液体对平壁面的作用力:(1)总压力的大小: (2)总压力的作用点: 2.8.2、静止液体对曲面壁的作用力:(1)总作用力的水平分力: (2)总作用力的垂直分力:(3)作用在曲面上总作用力的大小和方向为: (4)总作用力的作用点:总作用力的水平分力的作用
13、线通过平面的压力中心,而垂直分力的作用线通过压力体的重心。故总作用力必通过两者的交点。(5)压力体及其确定原则:压力体是一个纯数学概念,而与该体积内是否充满液体无关。一般方法如下:(a)取自由液面或其延长线;(b)取曲面本身;(c)曲面两端向自由液面投影,得到两根投影线;(d)以上四根线将围出一个或多个封闭体积,这些体积在考虑了力的作用方向后的矢量和就是所求的压力体。2.8.3、阿基米德原理:(1)水平方向的受力问题:(2)垂直方向的受力问题:(阿基米德原理浮力定律:)(3)固体在液体中的浮沉问题(4)浮体的稳定性问题:二、本章难点:1、在应用静力学基本方程解题时,如何判断等压面是要点,要利用
14、等压面和静力学基本方程把问题联系起来,判断等压面要注意三个方面:一是流体是否连通;二是看是否为同种流体;三是看是否在同一平面上。2、对于相对静止容器中流体的平衡问题,平衡微分方程的积分关键是如何确定系统中的质量力,然后就可代入进行积分了。解题中关键要能运用好等压面方程(主要是自由液面方程)来解决工程实际问题。3、对于复杂曲面,流体的垂直作用力如何确定,一方面是要对复杂曲面进行分解,然后将所有垂直分力求和;另一方面对总作用力的作用点可依据通过对称物体的中心,或依据水平分力与垂直分力共面时,由通过两者的交点来确定。第三章、流体运动学一、主要内容:3.1、研究流体运动的两种方法:3.1.1、拉格朗日
15、法:这种研究方法着眼于流体的质点,它以个别流体质点的运动作为研究的出发点,从而研究整个流体的运动。3.1.2、欧拉法:欧拉法着眼于流场中的空间点,研究流体质点经过这些空间点时,运动参数随时间的变化,并用同一时刻所有点上的运动情况来描述整个流场的运动。3.2、流体运动的基本概念:3.2.1、定常流动与非定常流动:(1)定常流动:流场中各点的流动参数与时间无关的流动,称为定常流动。(2)非定常流动:流场中各点的流动参数随时间变化的流动,称为非定常流动。3.2.2、迹线与流线:(1)迹线:迹线就是流体质点在流场中的运动轨迹或路线。(2)流线:流线是用来描述流场中各点流动方向的曲线。它是某时刻速度场中
16、的一条矢量线,在线上任一点的切线方向与该点在该时刻的速度方向一致。流线是若干流体质点在某一时刻的速度方向线形成的光滑曲线。即流线是同时刻流场中连续各点的速度方向线。流线的微分方程:流线具有以下性质:(1)流线上某点的切线方向与该点处的速度方向一致。(2)流线是一条光滑曲线。流线之间一般不能相交。如果相交,交点速度必为零或无穷大。速度为零的点称为驻点;速度为无穷大的点称为奇点。(3)非定常流动时,流线随时间改变;定常流动时则不随时间改变。此时,流线与迹线重合。3.2.3、流面、流管、流束:3.2.4)总流:流动边界内所有流束的总和称为总流。总流按其边界性质的不同可分为:有压流动、无压流动、和射流
17、三种。3.2.5、一维流动、二维流动和三维流动:根据流动参数与三个空间坐标关系,将流动分为一维流动、二维流动、三维流动。3.2.6、缓变流和急变流:3.2.7、过流断面、湿周、水力半径、水力直径:1)过流断面:与总流或流束中的流线处处垂直的断面称为过流断面(或称过流截面)。用或表示。2)湿周:在总流的过流断面上,流体与固体接触的长度称为湿周,用表示。3)水力半径:总流过流断面的面积与湿周之比称为水力半径,用表示: 4)水力直径:水力半径的四倍为水力直径。3.2.8、流量、平均流速:1)流量:单位时间内流经过流断面的流体的数量称为流量,以体积表示时称为体积流量(简称流量),用表示。以质量表示时称
18、为质量流量,用表示。法定单位是和,其它单位有及等。2)平均流速:即过流断面上流体以某一平均速度流过,则其流速为过流断面上的平均速度: 3.2.9、系统和控制体:3.3、雷诺输运方程: 或 它是将按拉格朗日方法求系统内物理量的时间变化率转换为按欧拉方法去计算的公式。该式说明,系统的某种物理量的时间变化率等于控制体(相对于坐标系是静止的)该种物理量的时间变化率加上单位时间内经过控制面的净通量。3.4、连续性方程:3.4.1、连续性原理:在稳定、不可压缩的流场中,任取一控制体,若控制体内的流体密度不变,则这时流入的流体质量必然等于流出的流体质量,这就是流体力学中的连续性原理。反映这个原理的数学关系式
19、就叫做连续性方程。连续性方程是质量守恒定律在流体力学中的表现形式。3.4.2、微元流管的连续方程: 3.4.3、总流的连续方程:定常流动时,连续方程为:对不可压缩流体的定常流动,由于流体的密度在运动过程中保持不变,故应有:3.5、流体微团的运动分析3.5.1、流体微团速度分解公式流体与刚体的主要不同在于它具有流动性,极易变形。在一般情况下,流体微团的运动可以分解为移动、转动和变形运动三部分。为线变形率,有:为角变形率,有:为角速度,有:3.5.2、速度分解定理的物理意义速度分解定理深入揭示了流体微团的运动规律。综上所述,流体微团运动是由平移、旋转和变形三种运动构成。变形运动包括线变形和角变形。
20、3.6、流体的有旋和无旋运动根据在某一时间内每一流体微团是否有旋转,可将流体的流动分为两大类型:有旋流动与无旋流动。当流体微团的旋转速度时的流动称为有旋流动;当时的流动称为无旋流动;又叫有势流动。3.7、涡量流体速度的旋度在流体力学中称为涡量,记为:涡量有一个重要的特性:3.8、涡旋运动的基本概念3.8.1、涡线:涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方向一致。涡线微分方程:3.8.2、涡面、涡管、涡束:3.8.3、涡通量:旋转角速度的值与垂直于角速度方向的微元涡管横截面积的乘积的两倍,称为微元涡管的涡通量(也称涡管强度),即:有限截面涡管的涡通量(涡管强度)可表示为
21、沿涡管截面的如下积分:3.6.4、涡管强度:对于流场中某时刻的涡管,取涡管的一个横截面A,称过曲面A的涡通量为该瞬时的涡管强度。3.8.5、速度环量:在流场中任取一封闭曲线L,速度沿封闭曲线的线积分称为沿曲线L的速度环量。3.9、涡管强度守恒定理涡管强度守恒定理:在同一时刻,同一涡管的各个截面上,涡通量都是相同的。即涡管强度是守恒的,与截面的选取无关。由涡强守恒定理可以得出两个结论:(1)对于同一个涡管来说,在截面积越小的地方,涡量越大,流体旋转的角速度越大。(2)涡管截面不可能收缩到零,因为在涡管零截面上的旋转角速度必然要增加到无穷大,这在物理上是不可能的。因此,涡管不能始于或终于流体,而只
22、能成为环形,或者始于边界,终于边界,或者伸展到无穷远。3.10、斯托克斯定理当封闭周线内有涡束时,则沿封闭周线的速度环量等于该封闭周线内所有涡束的涡通量之和,这就是斯托克斯定理。斯托克斯定理表明,沿封闭曲线L的速度环量等于穿过以该曲线为周界的任意曲面的涡通量。3.10.1、单连通域:区域内任一条封闭周线都能连续地收缩成一点而不越出流体的边界的一种区域;否则称为多连通域。3.10.2、平面上的有限单连通区域的斯托克斯定理的表达式说明沿包围平面上有限单连通区域的封闭周线的速度环量等于通过该区域的涡通量。3.10.3、空间的斯托克斯定理:沿空间任一封闭周线K的速度环量等于通过张于该封闭周线上的空间表
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流体力学 复习
