惯性矩的计算方法及常用截面惯性矩计算公式.doc
《惯性矩的计算方法及常用截面惯性矩计算公式.doc》由会员分享,可在线阅读,更多相关《惯性矩的计算方法及常用截面惯性矩计算公式.doc(13页珍藏版)》请在沃文网上搜索。
1、一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积,定义它对任意轴的一次矩为它对该轴的静矩,即 y x 整个图形对y、z轴的静矩分别为 C y (I-1) 0 A x2.形心与静矩关系 图I-1 设平面图形形心C的坐标为 则 0 , (I-2) 推论1 如果y轴通过形心(即),则静矩;同理,如果x轴通过形心(即),则静矩;反之也成立。推论2 如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,则图形形心必在此轴上。3.组合图形的静矩和形心设截面图形由几个面积分别为的简单图形组成,且一直各族图形的形心坐标分别为,则图形对y轴和x
2、轴的静矩分别为 (I-3)截面图形的形心坐标为 , (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。(2) 静矩有的单位为。(3) 静矩的数值可正可负,也可为零。图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。(4) 若已知图形的形心坐标。则可由式(I-1)求图形对坐标轴的静矩。若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。 (二).惯性矩 惯性积 惯性半径1. 惯性矩定义 设任意形状的截面图形
3、的面积为A(图I-3),则图形对O点的极惯性矩定义为 (I-5)图形对y轴和x轴的光性矩分别定义为 , (I-6)惯性矩的特征(1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。(2) 极惯性矩和轴惯性矩的单位为。(3) 极惯性矩和轴惯性矩的数值均为恒为大于零的正值。(4) 图形对某一点的极惯性矩的数值,恒等于图形对以该点为坐标原点的任意一对坐标轴的轴惯性矩之和,即 (I-7)(5) 组合图形(图I-2)对某一点的极惯性矩或某一轴的轴惯性矩,分别等于各族纷纷图形对同一点的极惯性矩或同一轴惯性矩之和,即 , , (I-8) y y x dA y 0 x0 x 图I-2 图
4、I-32. 惯性积定义 设任意形状的截面图形的面积为A(图I-3),则图形对y轴和x轴的惯性积定义为 (I-9)惯性积的特征(1) 界面图形的惯性积是对相互垂直的某一对坐标轴定义的。(2) 惯性积的单位为。(3) 惯性积的数值可正可负,也可能等于零。若一对坐标周中有一轴为图形的对称轴,则图形对这一对称轴的惯性积必等于零。但图形对某一对坐标轴的惯性积为零,这一对坐标轴重且不一定有图形的对称轴。(4) 组合图形对某一对坐标轴的惯性积,等于各组分图形对同一坐标轴的惯性积之和,即 (I-10)3. 惯性半径定义: 任意形状的截面图形的面积为A(图I-3),则图形对y轴和x轴的惯性半径分别定义为 , (
5、I-11) 惯性半径的特征(1) 惯性半径是对某一坐标轴定义的。(2) 惯性半径的单位为m。(3) 惯性半径的数值恒取证之。(三).惯性矩和惯性积的平行移轴公式平行移轴公式 (I-12) (I-13)平行移轴公式的特征(1)意形状界面光图形的面积为A(图(I-4); 轴为图形的形心轴;x,y轴为分别与形心轴相距为a和b的平行轴。(2)两对平行轴之间的距离a和b的正负,可任意选取坐标轴x,y或形心为参考轴加以确定。(3)在所有相互平行的坐标轴中,图形对形心轴的惯性矩为最小,但图形对形心轴的惯性积不一定是最小。 y dA b C a 0 x 图I-4(四)、惯性矩和惯性积的转轴公式.主惯性轴主惯性
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 惯性矩 计算方法 常用 截面 计算 公式