毕业设计论文 外文文献翻译 中英文对照 21世纪的硅微电子学.doc
《毕业设计论文 外文文献翻译 中英文对照 21世纪的硅微电子学.doc》由会员分享,可在线阅读,更多相关《毕业设计论文 外文文献翻译 中英文对照 21世纪的硅微电子学.doc(10页珍藏版)》请在沃文网上搜索。
1、原文The 21stCenturys Silicon microelectronics1IntroductionLooking at the development of human society in the history of civilization, all the production mode and lifestyle of the major and new technologies have caused, science and technology as revolutionary force, and promote the development of human
2、 society. More than 50 years ago from the invention of the transistor to the current microelectronics technology to become the basis of the information society and the historical development of the core fully proved that science and technology are the primary productive forces. Information is object
3、ive things state and the characteristics of a universal movement forms, together with the materials and energy is an important resource for human society, but its use is just the beginning. Currently facing the information revolution to digitalization and networking as a feature. Digital has greatly
4、 improved the peoples access to information, and better meet the peoples demand for information, and network makes it more convenient for people to exchange information so that the entire planet into a global village. To the digital and network characteristics of information technology into the same
5、 general technical different, it is highly permeable and infrastructure, it can infiltrate and transform the various industries and sectors, changes in the production and human lifestyles, changing economic patterns and the social, political, cultural and other fields. And it is one of the foundatio
6、ns of microelectronics technology. It is no exaggeration to say that no progress in microelectronics technology, it is impossible today the vigorous development of information technology, microelectronics has become a cornerstone of the development of the information society.For more than 50 years h
7、istory of the development of microelectronic technology is, in fact, the process of continuous innovation, including innovation here refers to the original innovation, technological innovation and application of innovation. The invention of the transistor is not an isolated carefully designed experi
8、ment, but rather a series of solid physics and semiconductor physics, materials science major breakthrough was achieved after the inevitable result. 1947 point-contact transistor invention, in 1948 invented junction field effect transistor and the subsequent silicon planar technology, integrated cir
9、cuits, CMOS technology, semiconductor random access memory, CPU, non-volatile memory, such as the microelectronics field of the invention are also a series of major innovation results manifest. At the same time, each of the major inventions are also open up a new field, has brought new huge market f
10、or our production and lifestyles have had a significant impact. It is precisely due to the field of microelectronics technology innovation can make microelectronic integrated able to quadruple every three years, features smaller times the speed of sustainable development for decades. Since 1968, and
11、 silicon technology-related theses and has already surpassed the number of steel-related academic papers, the view was expressed that, after 1968 following the mankind enters the stone, bronze, iron age after the era of silica (silicon age).Therefore we can say is the essence of social development i
12、nnovation, there is no innovation, the community can only be imprisoned in the super-steady-state trap. Although innovation as a driving force for economic development in the reform of the community will often creativdestruction, but after this destruction, will start at a new higher level of innova
13、tion cycle, society is in such spiral of the way forward.In the microelectronics technology development for the first 50 years, innovation has played a decisive role in the future, the development of microelectronics technology will depend on the outcome of a series of innovative emerging. We believ
14、e that: At present, microelectronic technology has been developed to a very critical period, the first half of the 21st century, which is the next 50 years the development of microelectronics technology trends and the major innovation mainly in the following four aspects: to silicon-based CMOS circu
15、its as the mainstream technology; system-on-chip (System On A Chip SOC) for the development focus of quantum electronic devices and molecules (atoms) self-assembly of nano-technology-based e-learning with other disciplines with the birth of new technology growth points, such as MEMS, such as DNA Chi
16、p.221 century will continue to the first half of the silicon-based CMOS circuits of the mainstreamMicroelectronics technology development goal is to continuously improve the performance of the system integration and cost-effective, and therefore call for an increase in chip integration, which is con
17、stantly shrinking semiconductor devices feature size power source. To MOS technology as an example, narrowing the channel length can increase the speed of integrated circuits; at the same time narrowing the channel length and width can be reduced device size, integration, the chip integrates a great
18、er number of transistors, the structure will be more complicated, Performance improved in the electronic system integration on a single chip; In addition, with the enhancement of integration, the systems speed and reliability have also greatly improved, a sharp price drop. The on-chip signal delay o
19、f less than the signal delay chip, so the device smaller, even if the device itself does not enhance performance, the performance of the integrated system can be greatly improved. Since the invention of the integrated circuit in 1958, in order to enhance the performance of electronic systems, reduce
20、 costs, and microelectronic devices feature size is shrinking, continuously improve processing accuracy, and the silicon area escalating. The development of integrated circuit chips basically followed the Intel co-founder of the Gordon E. Moore predicted by Moores Law in 1965, that is, every three y
21、ears of integration increased four times, feature smaller times. During this period, although there are many who predict this trend will slow, but the development of the microelectronics industry for more than 30 years the situation confirmed Moores prediction 2. And according to our projections, th
22、e development of microelectronic technology of this trend will continue in the 21st century, a period of time, it is any other industry can match the.Now, 0.18-micron CMOS process technology in the microelectronics industry has become a mainstream technology, 0.035 and 0.020 micron micron device has
23、 been successful in the laboratory preparation, research work has entered the sub-0. 1-micron technology stage, the corresponding gate oxide thickness of only 2.0 to 1.0 nm. It is estimated that by 2010, the feature size of 0.05 to 0.07 microns 64 GDRAM products will be in production. The 21st centu
24、ry, at least the first half of the 21st century, microelectronics production technology will continue to reduce the size of the silicon-based CMOS process technology into the mainstream. Although micro-electronics and other compounds in the research of new materials made a lot of progress, but not r
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 毕业设计论文 外文文献翻译 中英文对照 21世纪的硅微电子学 毕业设计 论文 外文 文献 翻译 中英文 对照 21 世纪 微电子学