高考理科数学概率题型归纳与练习(含答案).doc
《高考理科数学概率题型归纳与练习(含答案).doc》由会员分享,可在线阅读,更多相关《高考理科数学概率题型归纳与练习(含答案).doc(15页珍藏版)》请在沃文网上搜索。
1、专题三:高考理科数学概率与数学期望一 离散型随机变量的期望(均值)和方差若离散型随机变量的分布列或概率分布如下: 1. 其中,则称为随机变量的均值或的数学期望,记为或数学期望 =性质 (1);(2)(为常数)2. ,(其中)刻画了随机变量与其均值的平均偏离程度,我们将其称为离散型随机变量的方差,记为或 方差2方差公式也可用公式计算3随机变量的方差也称为的概率分布的方差,的方差的算术平方根称为的标准差,即1.设X是一个离散型随机变量,其分布列如下表,试求EX,DX。X101P二超几何分布对一般情形,一批产品共件,其中有件不合格品,随机取出的件产品中,不合格品数的分布如下表所示:其中网高考资源网一
2、般地,若一个随机变量的分布列为,其中,则称服从超几何分布,记为,并将记为1高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有个红球,个白球,这些球除颜色外完全相同现一次从中摸出个球, (1)若摸到个红球个白球的就中一等奖,求中一等奖的概率 (2)若至少摸到个红球就中奖,求中奖的概率解:由22节例1可知,随机变量的概率分布如表所示:X012345P 从而 答:的数学期望约为说明:一般地,根据超几何分布的定义,可以得到2. 在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:(I)取出的3件产品中一等品件数X的分布列和数学期望; (II)取出的3件产品中一等品件
3、数多于二等品件数的概率。三二项分布1次独立重复试验一般地,由次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即与,每次试验中。我们将这样的试验称为次独立重复试验,也称为伯努利试验。(1)独立重复试验满足的条件 第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。(2)次独立重复试验中事件恰好发生次的概率。2二项分布若随机变量的分布列为,其中则称服从参数为的二项分布,记作。1一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数的概率分布。2.一名学生每天骑车上学,从他家到学校的
4、途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.(1)设为这名学生在途中遇到红灯的次数,求的分布列;(2)设为这名学生在首次停车前经过的路口数,求的分布列;(3)求这名学生在途中至少遇到一次红灯的概率.3.甲乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(1)记甲击中目标的此时为,求的分布列及数学期望;(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.【巩固练习】1.(2012年高考(浙江理)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)
5、3个球,记随机变量X为取出3球所得分数之和.()求X的分布列;()求X的数学期望E(X).2(2012年高考(重庆理)(本小题满分13分,()小问5分,()小问8分.)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.() 求甲获胜的概率;() 求投篮结束时甲的投篮次数的分布列与期望3设篮球队与进行比赛,每场比赛均有一队胜,若有一队胜场则比赛宣告结束,假定在每场比赛中获胜的概率都是,试求需要比赛场数的期望3(2012年高考(辽宁理)电视传媒公司为了了解某地区电视观众对
6、某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.()根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?()将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望和方差.5.(2007陕西理)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、
7、二、三轮的问题的概率分别为、,且各轮问题能否正确回答互不影响. ()求该选手被淘汰的概率; ()该选手在选拔中回答问题的个数记为,求随机变量的分布列与数数期望.(注:本小题结果可用分数表示)6. 一批产品共10件,其中7件正品,3件次品,每次从这批产品中任取一件,在下述三种情况下,分别求直至取得正品时所需次数的概率分别布.(1)每次取出的产品不再放回去;(2)每次取出的产品仍放回去;(3)每次取出一件次品后,总是另取一件正品放回到这批产品中.7. (2007山东)设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程x2+bx+c=0实根的个数(重根按一个计)(I)求方程x2+bx+c=
8、0有实根的概率;(II)求的分布列和数学期望;8.(本题满分12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(I)若某位顾客消费128元,求返券金额不低于30元的概率;(II)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元),求随机变量的分布列和数学期望. 9. (本题满分12分)中国黄石第三届国际矿冶文化旅游节将于2012
9、年8月20日在黄石铁山举行,为了搞好接待工作,组委会准备在湖北理工学院和湖北师范学院分别招募8名和12名志愿者,将这20名志愿者的身高编成如下茎叶图(单位:cm)湖北理工学院湖北师范学院996507211516171819891258934601若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有湖北师范学院的“高个子”才能担任“兼职导游”。(1)根据志愿者的身高编茎叶图指出湖北师范学院志愿者身高的中位数;(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 理科 数学 概率 题型 归纳 练习 答案