CVT自动变速器电液控制系统设计.doc
《CVT自动变速器电液控制系统设计.doc》由会员分享,可在线阅读,更多相关《CVT自动变速器电液控制系统设计.doc(32页珍藏版)》请在沃文网上搜索。
1、 摘要汽车金属带式无级变速器CVT(Continuously Variable Transmission)是当代最先进的汽车变速器之一。由于它可以使发动机在最经济的区域工作,与有级自动变速器(AT)相比显示出惊人的节油效果,成为取代AT的最佳传动形式。传动系是车辆中较为重要、复杂的系统之一。以前人们把发动机和变速器分开来研究,变速器是以适应发动机和整车参数要求来设计的。CVT的出现使人们必须把发动机和CVT作为一个完整的动力总成来看待,用控制器把二者有机地联系起来,实现最优工作状态。电液控制系统是金属带式无级变速器的核心部分。它不论是控制原理还是控制过程都与液力式控制系统有很大的不同,其控制内
2、容也很丰富。它最突出的优点是:可以改变自动变速器的换档规律;控制更加精确,结构更加紧密;具有故障自诊断和失效保护功能。本文围绕金属带式无级变速器的电液控制系统进行了设计。分析了电液控制系统的特性并设计CVT电液控制系统,分析了控制阀的特性并设计夹紧力控制系统与速比控制系统的控制器。关键词:金属带式无级变速器,电液控制系统,夹紧力控制,速比控制目录摘要2第一章 绪论41.1 金属带式无级变速器41.2 金属带式无级变速传动的基本原理41.2.1 金属带式无级变速器的基本组成及传动原理41.2.2 金属带式无级变速传动的几何关系和基本参数61.3 金属带的受力分析71.3.1 金属环的张力分析91
3、.3.2 金属片的受力分析101.3.3 金属带的受力分析12第二章 金属带式无级变速器电液控制系统分析152.1 CVT 液压控制系统方案讨论152.1.1 机液控制系统特点152.1.2 电液控制系统162.2 CVT传动控制系统172.2.1 CVT夹紧力控制172.2.2 CVT速比控制18第三章 CVT电液控制系统设计193.1 CVT液压控制系统设计193.1.1 CVT控制系统的功能193.1.2 CVT液压控制系统设计203.2 CVT电子控制系统设计223.2.1 电子控制系统的结构223.2.2 电控系统接口电路设计243.3 CVT控制器设计263.3.1 夹紧力控制系统
4、控制器的设计263.3.2 速比控制系统控制器的设计28第四章 结论31参考文献32致谢33第一章 绪论1.1 金属带式无级变速器无级变速器(CVT)可以使发动机在最佳状态下工作,依靠变速器无级调速来适应汽车的各种速度,因此可以使发动机燃烧最好,排气污染最小,达到节油的目的。金属带式无级变速器是荷兰VDT公司的工程师Van Doorne发明的,用金属带代替了胶带,大幅度提高了传动的效率、可靠性、功率和寿命,经过3040年的研究,开发已经成熟,并在汽车传动领域占有重要的地位。 金属带式无级变速器的核心元件是金属带组件。金属带组件由两组9-12层的钢环组和350-400片左右的摩擦片组成,其中钢环
5、组的材料、尤其是制造工艺是最难的,要实现强度高,各层带环之间“无间隙”配合。金属带式无级变速器的主、从动两对锥盘夹持金属带,靠摩擦力传递运动和转矩。主、从动边的动锥盘的轴向移动,使金属带径向工作半径发生无级变化,从而实现传动比的无级变化,即无级变速。金属带式无级变速器采用带锁止离合器的液力变矩器作为起步离合器使用,液压泵提供锥盘加压、传动与调速系统用高压油,高压油通过液压缸、活塞作用于主、从动两对锥盘,夹持金属带,产生摩擦力传递运动和转矩,后面是齿轮传动和差速器传动。1.2 金属带式无级变速传动的基本原理1.2.1 金属带式无级变速器的基本组成及传动原理金属带式CVT主要由金属传动带、油泵、工
6、作轮、起步离合器、中间减速机构以及控制系统组成。 (1)金属传动带金属传动带有两组金属环和多个金属片组成。如图11所示,每个金属片的厚度为1.4mm,在两侧工作轮的挤压力作用下传递动力;每组金属环由数条厚为0.18mm的环带叠合而成,金属环功用是提供预紧力,在动力传递过程中,约束和引导金属片的运动,有时承担部分转矩传递。图11金属传动带的结构1.金属片 2.金属环 (2) 油泵为 CVT 传动系统提供控制、冷却和润滑的液压油源。常用的液压油泵有齿轮泵和叶片泵。为了提高液压油泵的工作效率,在最近开发的CVT传动器中采用滚子式叶片泵。 (3) 工作轮主从动轮由可动与不动的半锥轮组成。如图2-2 所
7、示,其工作面大多为直线锥面体。在液压控制系统作用下,依靠钢球滑道结构作轴向移动,可连续的改变传动带轮工作半径,实现无级变速传动。 (4) 起步离合器目前,汽车起步离合器包括湿式多片离合器、电磁离和器和液力变矩器三种。液力变矩器与CVT 系统合理匹配,可使汽车以足够大的牵引力平顺的起步,提高驾驶舒适性。当发动机转速高时,闭锁离合器将泵轮与涡轮锁住,成为整机传动,提高了传动效率。但成本较高,为降低成本,研究人员一直在致力于引用电控技术,在电磁离合器或多片湿式离合器上实现液力变矩器的传递特性。(5) 中间减速机构由于无级变速机构可提供的传动比(即速比,输出带轮的工作半径与输入带轮工作半径之比)范围为
8、0.4452.6 左右,不能完全满足整车传动比变化范围的要求,因而设有中间减速机构。(6) 控制系统控制系统是用来实现 CVT系统传动速比无级自动变化的VDTCVT控制系统,分机液控制系统和电液控制系统。机液控制系统主要有油泵、液压调节阀(速比和带与轮间压紧力的调节)、传感器(油门和发动机转速)和主、从工作轮的液压缸及管道组成。日本的本田公司开发的CVT中,采用是电液控制系统,系统可以利用电子控制系统容易实现控制算法的优点,对系统进行精确的控制。而采用液压执行机构可以利用液压系统翻印快的特点。CVT初期产品多采用机液控制系统,近期一般采用电液控制系统,但电液控制系统成本高。CVT的工作原理如图
9、12所示。传动器的主、被动轮由固定和可动的两部分组成,形成V 型槽,与金属带啮合。当输入工作带轮的可动部分沿轴向外移动,输出工作轮的可动部分沿轴向内移动,使得输入带轮工作半径变小,而输出带轮半径变大,输出与输入带轮的工作半径之比变大,即传动比变大,反之,传动比将变小,由于工作半径大小变化是连续的,所以称之为无级变速。图12 CVT工作原理图1.2.2 金属带式无级变速传动的几何关系和基本参数 由金属带的独特结构所决定,摩擦片的摆棱在两个锥盘的包角上是连续接触的。因为摩擦片很薄,在带轮的包角部分摆棱的连线近似于圆弧。根据金属带的运动状态,可将整条金属带划分为四个区段,即为主动轮包角ab、主动轮出
10、口至从动轮入口的直线部分bc、从动轮包角cd、从动轮出口至主动轮入口的直线部分da。摩擦片摆棱的线速度b在主动轮包角ab和主动轮出口至从动轮入口的直线部分bc上是连续的,忽略摩擦片在主动轮上的滑动。摩擦片摆棱的线速度b可表示为bA x R1B x R2则金属带传动的理论传动比i为iA / B R2 / R1式中A 、B主、从动带轮角速度(rad/s); R1、R2主、从动带轮节圆半径(mm)。当从动轮工作在最大节圆半径,主动轮工作在最小节圆半径时,传动比最大,为imaxR2max / R1min 。当主动轮工作在最大节圆半径,从动轮工作在最小节圆半径时,传动比最小为iminR2min / R1
11、max 。变速器的最大传动比imax和最小传动比imin之比定义为变速器的变速比Rb,也称为变速器的变速范围,即Rbimax / iminR2max x R1max / R1min x R2min 。变速比Rb的大小取决于主、从带轮的最大工作半径和最小工作半径。最大工作半径受两个带轮中心距的限制,最小工作半径受主、从带轮轴径的限制。变速器增速与减速对称分布时,主、从动轮尺寸相同,变速比Rb为Rb(R2max / R1min)(R1max / R2min)。 在带轮轴径和中心距一定的情况下,增速与减速对称分布,可获得最大变速比。金属带传动的传动比为i时,主、从动轮的节圆半径可由下列公式确定。L=
12、(R1+h)A +(R2+h)B + 2Acossin=R2 - R1 / Ai=R2 / R1式中R1、R2主、从动带轮节圆半径(mm); h摩擦片摆棱至鞍面的距离(mm); A 、B主、从动带轮包角; L金属带工作长度,取金属带金属环内环周长(mm); A金属带传动中心距(mm)。1.3 金属带的受力分析金属带传动于普通的橡胶带、混合带和链传动不同,它主要是通过金属片之间的推力与环的张力一起来传递转矩的。由于存在初始间隙,在整个带长范围内,有的区域金属片之间有推力的存在,而有的区域,金属片之间则没有推力存在。图13所示为在低档下,当传递较大转矩时,金属片在整个带长范围内的分布。图 13 金
13、属带传动示意图在主动带轮入口之前(B区),金属片之间有间隙存在;当金属片运转到主动带轮上时(P区),由推力的作用导致金属片相互挤压。在主动带轮出口到从动带轮的入口处(A区),金属片被挤压在一起;在从动带轮的入口到出口处,金属片间的压力逐渐减小,直至消失(S区)。在传递转矩的过程中,由于金属片与带轮之间,金属片与金属环之间以及内层和外层的金属环之间都存在相对滑动,因此金属带的受力非常复杂。为便于分析,作如下假设:1、带轮与金属片之间、金属环与金属片之间以及金属环之间的摩擦系数为常数。2、由于金属片的横向刚度高,金属带在带轮的圆形轨道上运行,沿带轮包角圆弧的中心与带轮中心重合。3、由于单个金属片的
14、厚度为1.4mm,这与带轮包角上金属带的总长度相比很小,因此可以把金属片之间相互作用的挤压力视为是连续的。4、把金属带中叠置在一起的金属环近似看作一条钢带,不考虑各层金属环之间的摩擦,它所受的周向张力沿带轮包角上的分布满足欧拉公式。5、在速比变化过程中,不考虑两带轮上金属带的中心线的偏差。6、设带轮为刚体,不考虑带轮的变形。为以下计算分析的需要,把金属带整个周长划分为四个区间,并建立坐标系。主动带轮以带轮入口处为坐标起点,方向与带轮转动方向相同;从动带轮以带轮入口为坐标起点,方向与带轮转动方向相同。金属带在主动带轮包角范围内为P区;主动带轮的出口到从动带轮的入口之间为A区;金属带在从动带轮包角
15、范围内为S区;从动带轮的出口到主动带轮的入口之间的直线部分为B区。下面以传动比i1时进行分析。1.3.1 金属环的张力分析图 14 金属环的受力分析如图 14 所示,在带轮包角上任取金属环上的微小单元d ,受力分析如下:X 方向: (1-3-1)Y 方向: (1-3-2)式中:l金属环与金属片之间的摩擦系数;dP 单位金属环上,金属片对金属环的作用力;C r 金属环的离心力由(1-3-1)、(1-3-2)式,得金属环张力T 的微分方程, (1-3-3)对(1-3-3)式积分,可以得到沿带轮包角任意位置金属环张力T()的表达式, (1-3-4)式中,C积分常数带入边界条件,可得金属环在带轮上的张
16、力分布方程。对主动带轮,当=0时, T(0)=Ta (1-3-5)所以在主动带轮上,沿带轮包角金属环的张力分布方程, (1-3-6)在从动带轮上,沿带轮包角金属环的张力分布方程, (1-3-7)式中 Ta A 区金属环的张力; P、S在主、从带轮上的坐标; P、S金属带在主、从动带轮上的包角。 lP 、 lS 主、从动带轮上金属环与金属片间的摩擦系数由于金属环的张力在整个包角范围内是连续变化的,所以金属环在主动带轮出口处的张力与从动带轮入口处的张力相等,由式(1-3-6)和式(1-3-7),可以确定上述假设成立应满足的条件, (1-3-8)1.3.2 金属片的受力分析 由假设可知在带轮包角上,
17、金属片所受的推力 Q 是连续的,如果对带轮包角上处于动弧上任意位置金属片取微小的单元d ,如图15 所示,则金属片的受力分析如下:X 方向: (1-3-9)Y 方向: (1-3-10)式中 dN单位金属片上,带轮对金属片的作用力,dN = N rd; 金属片与带轮之间的摩擦系数; 摩擦角; C e 金属片的离心力;图 15 金属片的受力分析 由式(1-3-1)、(1-3-2)、(1-3-9)、(1-3-10)可得沿带轮包角金属片推力Q的微分方程(1-3-11)式中,(1-3-12)当量摩擦系数表示金属带与带轮接触点处切向摩擦力与径向摩擦力之比时,它是摩擦角的函数。定传动比时金属带没有径向运动,
18、则式(1-3-12)可以简化为, (1-3-13)这与普通三角带的切向摩擦系数是一致的。若忽略金属带运动过程中产生的离心力的影响,则式(1-3-11)可简化为, (1-3-14)对式(1-3-14)积分,并代入边界条件,分别得到金属片的压力在主、从带轮包角上的分布方程。在主动带轮上金属片的推力分布方程, (1-3-15)在从动带轮上金属片的推力分布方程, (1-3-16)式中, P 、S 主、从动带轮上金属片与带轮间的当量摩擦系数。由图可以确定,在主动带轮的出口处与从动带轮的入口处,金属片的夹紧力相等Q = Q0。由式(1-3-15),当 = P 时, (1-3-17)由式(1-3-16),当
19、 = S 时, (1-3-18)所以,由式(1-3-17)与式(2-2-18)相等,由此得到 (1-3-19)从式(1-3-19)可以看出,主、从动带轮上的的动弧P 、S 之间不是独立的,P随S变化。当传递的转矩渐渐增大时,在主从动带轮上,金属带的动弧也随之增大。所以可以认为S是P的函数,满足式(1-3-19)。1.3.3 金属带的受力分析根据以上分析,可以确定在不同传动比时,金属环张力和金属片推力方程。由此可以确定在整个带长范围内的金属带的力分布。在相同条件下:转矩比(或称输入转矩比,是带轮在一定条件下,即传动比和主、从动带轮的间夹紧力保持不变时,把输入的转矩TP与该条件下传递的极限转矩TP
20、M 的比值定义为转矩比) =0.5,金属环最大张力为T=1000N,=l=0.1时,进行了计算。计算结果如图16 所示。图中所示为计算得到的金属环的张力和金属片的推力的比较图。纵坐标显示金属环张力和金属片推力的数值大小;横坐标表示金属带沿整个带长的分布。图16 金属片的推力和金属环的张力分布由图中可见,在相同条件下,在传动比不同时,金属片的推力、金属环张力的大小以及在整个带长范围内的分布是不同的,且相差很大。根据图15 所示的计算结果,当传动比i1时,金属环张力的分布形式与普通平带在传递动力时相同,在主动带轮上,从入口到出口渐渐减小,在从动带轮上则是从入口到出口逐渐增加。然而,在i=0.5 时
21、,在主动带轮上张力从入口到出口逐渐增大,而在从动带轮上,张力从入口到出口则逐渐减小。这是由于金属带的特殊结构造成的。如图11 所示,金属环与金属片的节圆半径之间相差dr。由于存在偏差,在小半径带轮上,金属环的速度比金属片的速度低,在小半径带轮上金属片推动金属环。由金属环的张力分布方程(1-3-6)、(1-3-7)可见,在一定速比条件下,金属环的张力大小与分布形式和输入转矩无关。在主动带轮上,金属环传递的转矩Tr ing大小如下, (1-3-20)当无级变速传动处于低档i 1.0时,由于作用在B区的金属环张力Tb大于在A区的金属环张力Ta,所以在主动带轮上,金属环从入口到出口传递正的转矩,即T
22、ring0,说明金属环的张力有助于转矩的传递,他承受的转矩的大小为Tr ing。由式(1-3-15)和(1-3-16)可见,在一定速比条件下,金属片的推力大小与输入转矩有关。金属环的张力承受的转矩的大小是不变的,因此当输入转矩大于或者小于金属环转矩时,必将引起金属片推力分布形式的变化。在其他条件不变的情况下,当输入转矩比不同时,金属环的张力与金属片的推力在带长范围内的分布如图2.7 所示。图17 低档时金属片推力与金属环张力分布由图中可以看出,当输入转矩不同时,金属片的推力大小与分布形式发生很大的变化。当转矩比=0.7时,输入转矩大于金属环传递的转矩,即Ti nT ring,那么作用在金属片上
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CVT 自动变速器 控制系统 设计