基于虚拟仪器的风扇故障检测系统 (2).doc
《基于虚拟仪器的风扇故障检测系统 (2).doc》由会员分享,可在线阅读,更多相关《基于虚拟仪器的风扇故障检测系统 (2).doc(48页珍藏版)》请在沃文网上搜索。
1、内蒙古科技大学毕业设计说明书(毕业论文) 基于虚拟仪器的风扇故障检测系统摘要风扇故障检测在风扇出厂过程中得到广泛应用,目前广泛采用的方法有振动诊断技术和声频诊断技术,但振动诊断技术是接触式测量,需克服测试线线体振动的影响,设备结构复杂,速度慢。本文采用基于虚拟仪器的音频故障诊断系统,构建高精度,低成本,功能灵活的故障诊断系统。在系统设计上,结合故障诊断的功能和虚拟仪器的设计方法,从硬件和软件方面张开系统设计。首先在保证系统可靠性和可行性的前提下,用计算机本身的声卡代替专用的数据采集卡进行数据采集,实现44.1kHz采样频率,16位采样深度,对风扇声信号进行实时采集。然后,在LabVIEW平台下
2、完成信号显示,信号分析,信号输入输出,数据保存与处理等应用程序和人机交互界面设计,完成音频信号的实时采集与显示,谐波失真分析,短时加窗处理等多种功能于一体的故障检测系统设计。系统经过测试,满足了风扇故障检测的需求,具有成本低廉,检测方便,性能稳定可靠等特点,可以推广到声音识别、环境噪声监测和实验室测量等多种领域,应用前景广阔。 关键词:音频信号;虚拟仪器;LabVIEW;故障检测;声音数据采集Fan Fault Detection System based on the Virtual Instrument AbstractFan fault detection is widely used
3、in the fan production process. At present, the methods used widely are vibration diagnosis technology and audio diagnosis technology, but vibration diagnosis technology is non-contact measurement so we need to overcome test line of body vibration influence.This paper adopted the audio fault diagnosi
4、s system based on virtual instrument, and constructed a flexible function of fault diagnosis system with high precision and low cost.It can be applied from the two sides of hardware and application software design to complete the system design based on the function fault diagnosis and virtual instru
5、ment design method. First ,on the premise to ensure system reliability and feasibility ,the special data acquisition card for data acquisition was instead by the owe sound card of computer ,to achieve an sampling accuracy of 44.1 kHz ,depth of sampling 16 bit ,to acquire the fan acoustic signal the
6、real-time data.Then, several applications programs, such as signal analysis, signal input-output, data storage and processing act. And human machine interface were complete in LabVIEW platform. .And it implemented the real-time data acquisition and display, harmonic distortion analysis, short and wi
7、ndow handle, and other function in one of the fault detection system design.It has been tested that the system could meet the needs of the fault detection system, with the feature of low cost, detection convenient, stable and reliable of performance. With broad application prospect, it can be applie
8、d to voice recognition, environmental noise monitoring, laboratory measurement research field etc.Key words:audio signal; virtual instrument; LabVIEW; fault diagnosis; sound card data acquisition目 录摘要IABSTRACTII第一章 引言11.1课题背景11.2研究内容11.3目前该领域的研究现状11.4运行环境1第二章 设计需求分析52.1 硬件实现52.2信号分析理论82.3声卡的可行性分析92.
9、4信号分析系统设计方案比较102.5模块化编程思想11第三章 系统设计方案133.1程序设计流程图133.2系统功能介绍143.2.1基本参数设定153.2.2前面板设计163.2.3软件程序设计173.3信号分析处理233.3.1时域分析233.3.2频域分析25第四章 风扇故障检测设计调试与运行284.1 运行VI284.2 调试VI284.3 实验测试结果304.2 试验结果分析38第五章 总结395.1总结395.2展望未来39参考文献41附录43致 谢44 44第一章 引言1.1课题背景为了确保产品的高质量,每台风扇出厂前都要进行参数检测,在规模化生产的今天,风扇检测线是目前大部分风
10、扇生产厂家采用的出厂检测方式。早期的检测方法是让检测线经过消音室,富有经验的工人在室内用人耳听辨别故障风扇。这种方式对操作人员要求高,缺乏客观性,不能保证质量的稳定性。而且检测速度慢,劳动强度大。严重影响了风扇出厂试验的速度与准确率。因此风扇厂家迫切需要改造现有的出厂检测技术。 但存在的一个问题是由于检测方法大部分是从底层进行开发,因而系统开发周期较长、开发成本较高。在传感器技术、测试技术、计算机技术和网络技术发展的推动下,虚拟仪器技术在数据采集、状态监测和数据分析等方面都成为了领先的开发平台。利用虚拟仪器技术进行故障诊断系统的开发,可以极大地缩短开发周期,节约开发成本,利用虚拟仪器强大的数据
11、分析和数据处理功能的支撑,可以使系统功能更加完善,并且具备较强的稳定性。 为此本文提出利用虚拟仪器技术LabVIEW作为开发平台,来实现电厂风机出厂状态监测和故障诊断。1.2研究内容利用声卡DSP技术和LabVIEW多线程技术,提出了一种基于声卡的采集声音信号与分析的廉价方案,具有实现简单、界面友好、性能稳定可靠等诸多优点。在LabVIEW环境中实现了音频信号的采集分析及数据处理。可以推广到声音识别、环境噪声监测和实验室测量等多种领域,应用前景广阔。1.3目前该领域的研究现状目前在风扇故障检测领域广泛采用的方法有振动诊断技术和声频诊断技术,但振动诊断技术是接触式测量,需克服测试线线体振动的影响
12、,设备结构复杂,速度慢;而音频诊断技术为非接触式测量,设备简单、速度快。因此,我们研制基于美国NI公司软件平台Lab view的风扇故障声测系统。1.4运行环境 本设计以虚拟仪器作为运行环境。虚拟仪器利用PC计算机显示器C(RT)的显示功能,模拟传统仪器的控制面板,并且输出检测结果。利用PC计算机强大的软件功能,实现信号数据的运算、分析、处理,由I/0接口设备完成信号的采集、测量与调理,从而完成各种测试功能的一种计算机仪器系统。与传统仪器相比,虚拟仪器具有以下几个性能特点:1.在通用硬件平台确定后,由软件取代传统仪器中的硬件来完成仪器的功能。2.仪器的功能是用户根据需要由软件来定义的,而不是事
13、先由厂家定义好的。3.仪器性能的改进和功能扩展只需进行相关软件的设计更新,而不需购买新的仪器。4.研制周期较传统仪器大为缩短。5.虚拟仪器开放、灵活,可与计算机同步发展,可与网络及其周边设备互联。虚拟仪器简介 由于微电子技术、计算机技术、软件技术、网络技术的高度发展及其在电子测量技术与仪器上的应用,新的测试理论、新的测试方法、新的测试领域以及新的仪器结构不断出现,在许多方面已经突破了传统仪器的概念,使电子测量仪器的功能和作用发生了质的飞跃。在这种背景下,20世纪80年代末美国率先研制成功虚拟仪器(Virtuallnstrument)。虚拟仪器的发展标志着自动测试与电子测量仪器领域技术发展的一个
14、崭新方向。所谓虚拟仪器(VirtualInsrtmunet),简称vi)就是在通用计算机为核心的硬件平台上,由用户设计定义、具有虚拟面板、测试功能由测试软件实现的一种计算机仪器系统。使用者用鼠标点击虚拟面板,就可以操作这台计算机系统硬件平台,就如同使用一台专用电测量仪器。虚拟仪器的出现,使测量仪器与个人计算机的界线更融为一体了。 虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通讯及图形化用户界面的软件组成的测控系统,也是一种由计算机操控的模块化仪器系统。虚拟仪器技术作为一门新兴的技术具有强大的生命力和发展潜力,在航天航空、国防军工、工业监测等一系列自动化测试领域中得到了广泛的应
15、用,也是目前仪器领域研究的热点与重点。在国外,以NI公司、HP公司、Tektronix公司、Racal公司等为代表的著名仪器生产厂家都对虚拟仪器技术投入了大量的人力物力,研制出了不少优秀的硬件模块与软件产品。 比较典型的如NI公司的LabVIEW,它是一种采用图形化编程的32位面向计算机测控领域的软件开发平台公司。LabVIEW是一种用图标代码来代替编程语言创建应用程序的开发工具。在基于文本的编程语言中,程序的执行依赖于文本所描述的指令,而LabVIEW使用数据流编程方法来描述程序的执行。LabVIEW用图形语言(G语言)、图标和连线代替文本的形式编写程序。像VB、VC等高级语言一样,LabV
16、IEW也是一种带有扩展库函数程序开发系统。LabVIEW的库函数包括数据采集、通用接口总线和串口仪器控制、数据显示、分析与存储等。为了便于程序调试,LabVIEW还带有传统的程序开发调试工具,例如可以设置断点,可以单步执行,也可以激活程序的,执行过程,以动画方式查看数据在程序中的流动。 LabVIEW是一个通用编程系统,它不但能够完成一般的数学运算与逻辑运算和输入输出功能,它还带有专门的用于数据采集和仪器控制的库函数和开发工具以及专门的数学分析程序包,基本上可以满足复杂的工程计算和分析要求。在LabVIEW环境下开发的程序成为虚拟仪器VI,因为它的外型与操作方式可以模拟实际的仪器。实际上,VI
17、类似于传统编程语言的函数或子程序。VI由前面板、框图程序和图标/连线端口组成1.前面板就是图形化用户界面,类似于仪器的面板包括旋钮、按钮、图形和其它控制元件与显示元件,以完成用鼠标、键盘向程序输入数据或从计算机显示器上观察结果。2.每一个前面板都有一个框图程序与之对应。框图程序用图形化编程语言编写,框图程序是对具体编程问题的图形解决方案,即VI的源代码。3.VI程序使用图标连线端口来替代文本编程的函数参数表,每个输入和输出的参数都有自己的连接端口,其它的VI可以由此向SubVI(即VI子程序)传递数据。LabVIEW的强大功能归因于它的层次化结构,用户可以把创建的VI程序当作SubVI来调用以
18、创建更加复杂的V工,并且这种调用的递阶次数是无限制的。 LabVIEW简化了科学计算、过程监控和测试软件的开发,已经在航空、航天、通信、汽车、半导体、电子、机械等世界范围领域的众多领域得到了广泛的应用。由于虚拟仪器的巨大优越性,国内外已经在使用虚拟仪器进行测试方面作了一系列有益工作,目前己开发了一些成功的虚拟测试系统。如挪威的CARDIAC公司的基于LabVIEW平台的测试北海油田石油、大气、水流的MPFM系统等。在国内,许多高等院校、研究所等也都开展了虚拟仪器技术的研究,如清华大学应用虚拟仪器技术构建的用于检测汽车发动机性能的出厂检测系统,哈尔滨工业大学的“仪器王”虚拟仪器系统等。 我国传统
19、仪器技术还比较落后,与国外相比,测量精度和可靠性均较低,且自动化程度较低。当前,各种测试软件、专用集成电路和固化软件的广泛应用,使系统技术和模块式仪器得以迅速发展,这些都给虚拟仪器的研究和应用创造了良好条件,同时也为我们提供了一个缩小与国际先进水平差距的机会。虚拟仪器在我国的研究和开发有着十分现实的意义,广泛采用虚拟仪器技术有助于提高我国仪器的整体水平,节省仪器开发的人力和费用。随着软件业和测试技术的发展,虚拟仪器技术必将在更多、更广泛的领域中得到应用和普及。第二章 设计需求分析系统的功能设计包括硬件设计和软件设计两部分.考虑到市场上销售的数据采集卡价格昂贵,本系统仅对音频信号进行采集处理.本
20、系统的硬件设计采用PC机自带的声卡作为声音信号采集设备.由于声卡采用DMA(直接内存读取)方式传送数据,极大地降低了CPU占用率,而且其具有16位的A/D转化精度,比通常12位A/D卡的精度高,对于许多工程测量和科学实验来说都是足够高的,其价格却比后者便宜得多,完全符合本系统设计要求.软件设计部分利用LabVIEW软件自带的声音处理模块配合其它常用功能模块完成.2.1 硬件实现声卡一般有Line In和Mic In两个信号输入插孔,声音传感器(本文采用通用的麦克风)信号可通过这两个插孔连接到声卡。若由Mic In输入,由于有前置放大器,容易引入噪声且会导致信号过负荷,故推荐使用Line In,
21、其噪声干扰小且动态特性良好。声卡测量信号的引入应采用音频电缆或屏蔽电缆以降低噪声干扰。若输入信号电平高于声卡所规定的最大输入电平,则应在声卡输入插孔和被测信号之间配置一个衰减器,将被测信号衰减至不大于声卡最大允许输入电平。此外,将声卡的Line Out端口接到耳机上还可以实时的监听声音信号。声卡的工作流程如图2.1所示。图2.1声卡的工作流程目前市售的数据采集卡都包含了完整的数据采集电路和与计算机的接口电路,但其价格与性能基本成正比,一般比较昂贵。随着DSP(数字信号处理)技术走向成熟,PC声卡本身就成为一个优秀的数据采集系统,它同时具有A/D和D/A转换功能,不仅价格低廉,而且兼容性好、性能
22、稳定、灵活通用,软件特别是驱动程序升级方便。ISA总线向PCI总线的过渡,解决了以往声卡与系统交换数据的瓶颈问题,同时也充分发挥了DSP芯片的性能。而且声卡用DMA(直接内存读取)方式传送数据,极大地降低了CPU占用率。一般声卡16位的A/D转换精度,比通常12位A/D卡的精度高,对于许多工程测量和科学实验来说都是足够高的,其价格却比后者便宜得多。 如果利用声卡作为数据采集设备,可以组成一个低成本高性能的数据采集与分析系统。当然,它只适合采集音频域的信号,即输入信号频率必须处于2020000Hz的音频范围内。如果需要处理直流或缓变信号,则需要其他技术的配合。声卡工作原理及性能指标 声音的本质是
23、一种波,表现为振幅、频率、相位等物理量的连续性变化。声卡作为声音信号与计算机的通用接口,其主要功能就是将所获取的模拟音频信号转换为数字信号,经过DSP音效芯片的处理,将该数字信号转换为模拟信号输出。声卡的基本工作流程为:输入时,麦克风或线路输入(Line In)获取的音频信号通过A/D转换器转换成数字信号,送到计算机进行播放、录音等各种处理;输出时,计算机通过总线将数字化的声音信号以PCM(脉冲编码调制)方式送到D/A转换器,变成模拟的音频信号,进而通过功率放大器或线路输出(Line Out)送到音箱等设备转换为声波,人耳侦测到环境空气压力的改变,大脑将其解释为声音。 衡量声卡性能的主要技术指
24、标有复音数量、采样位数、采样频率、波表合成方式和波表库容量、声道数、信噪比、总谐波失真和缓冲区等。a) 复音数量:复音数不是声卡的 DAC(Digital-to-Analog Conversion,数字/模拟转换器)或 ADC(Analog-to-Digital Conversion,模拟/数字转换器)的转换位数,而是代表声卡能同时发出多少种声音。复音数越大,音色就越好,播放 MIDI(Musical Instrument Digital Interface,音乐设备数字接口)时可以听到的声部越多、越细腻。如果一首 MIDI 乐曲中的复音数超过了声卡的复音数,则将丢失某些声部,但一般不会丢失主
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于虚拟仪器的风扇故障检测系统 2 基于 虚拟仪器 风扇 故障 检测 系统