基于小波变换的图像分割的研究.doc
《基于小波变换的图像分割的研究.doc》由会员分享,可在线阅读,更多相关《基于小波变换的图像分割的研究.doc(28页珍藏版)》请在沃文网上搜索。
1、 摘 要近年来,对图像分割的研究一直是图像技术研究的焦点。图像分割是一种很重要的图像分析技术,它的目的是把图像分为具有各种特性的区域并把感兴趣的部分提取出来。它融合了多个学科的成果,并且成功应用于工业、农业、医学、军事等领域,得到了广泛的应用。图像分割是一个经典的问题,实现方法有很多种,但是至今仍没有一种通用的解决方法。经过研究发现,区分真正的噪声和边缘是图像分割的难题之一,然而小波变换则可以解决这一问题,小波变换是一种时-频两域的分析工具。本文则基于小波变换对图像分割技术进行研究,主要介绍了小波阈值分割方法。文中通过直方图、建立模型等手段对这两种方法做出具体的讨论,并利用Matlab分别对两
2、种方法进行仿真,并得到了有效的结果。根据仿真结果我们可以看出不同分割方法的不同分割效果,从而更好地理解这些方法。关键词:图像分割; 小波变换; 阈值;AbstractIn recent years, the study of image segmentation has been the focus of imaging technology. Image segmentation is an important image analysis, its purpose is to take the various characteristics part out of the image. I
3、t combines the results of multiple disciplines, and successfully applied to such fields as industry, agriculture, medicine, military, and a wide range of applications.There are many ways to achieve image segmentation, but could not find a common solution. After the study found that the distinction b
4、etween real noise and the edge of one of the difficult problem of image segmentation, wavelet transform can solve this problem, wavelet transform is a time - frequency domain analysis tools. In this paper, image segmentation technique based on wavelet transform to study the two wavelet segmentation
5、method, the wavelet thresholding segmentation method. Histogram, the establishment of model and other means to make a specific discussion of these two approaches, and use the Matlab simulation, and the effective results of the two methods, respectively. According to the results of the simulation we
6、can see the different segmentation results of different segmentation methods, in order to better understand these methods.Key words:Image; Wavelet transform; Threshold目 录摘 要IAbstractII1 绪论11.1 空域图像分割11.2 频域图像分割21.3 小波域图像分割31.3.1 图像分割的描述31.3.2 图像分割的发展及现状41.3.3 基于适当最优准则实现图像的分割方法51.3.4 基于小波变换的图像分割方法61.
7、4 本文的组织结构72 小波变换理论72.1 小波理论72.2 小波变换82.2.1 小波变换的概述82.2.2 正交小波基的种类82.2.3 多分辨率分析102.2.4 连续小波变换102.2.5 离散小波变换112.2.6 小波离散图像的描述123 图像分割中的小波阈值法143.1 小波阈值法的原理143.2 图像直方图的多分辨率分析153.3 阈值分割算法163.4 实验仿真164 结论与展望184.1 论文的总结184.2 论文的展望18致 谢20参考文献21附录22241 绪论1.1 空域图像分割空域是指图像平面本身,空域图像分割就是直接对图像的像素进行处理分割。研究者经过几十年的研
8、究与努力,研究出了很多种空域图像分割方法。归纳起来大致包括:串行边界分割技术、串行区域分割技术、并行边界分割技术、并行区域分割技术、结合特定理论工具的分割技术等1 LI Yue-e, LIU Qing-fang. The Application of Wavelet Transform to the Image SegmentationJ. College of Physics and Electronics Engineering, Shanxi University, Taiyuan030006, China, 2009, 32(4): 566571.。1. 串行边界分割技术串行边界分割技
9、术指通过顺序搜索边缘点,采用串行方式来对感兴趣目标的边界进行检测。主要有以下三个关键步骤:首先确定一个顺序搜索的起始边界点;然后在确定先前的搜索结果对下一边界点的检测和下一个结果的影响的前提之下,选择某种搜索策略,根据相应原则逐一检测新的边界点;最后选定搜索终止的条件,结束整个搜索过程。串行边界分割技术所采取的策略主要有以下两种:首先检测出边界点,然后再连接边界点;以交叉结合的方式来进行边界点的检查和连接。2. 串行区域分割技术串行区域分割技术指通过对目标区域的直接检测,用串行方式来进行图像分割的技术。它的特点是将整个处理过程分解为的多个步骤依次进行,然后前续步骤的处理结果来决定对后续步骤的处
10、理。结合了特定数学理论工具的一些图像分割方法也经常用串行区域分割的方式。串行区域分割技术有两种基本形式:从单个像素出发,逐渐合并成所需的分割区域;从全图出发,逐渐分裂成所要的分割区域。3. 并行边界分割技术并行边界分割技术指通过对感兴趣区域的边界进行检测,用并行方式来对图像进行分割技术。其过程主要有以下两个步骤:检测感兴趣区域的边界点; 形成感兴趣区域的边界。对于步骤可以采用各种微分算子来直接检测,也可以利用拟合方法与边缘模型进行间接检测。对于步骤由于其过程较复杂,因此单纯利用微分算子不能形成闭合边界,需要通过一定的准则和数学工具将感兴趣的区域分离出来。4. 并行区域分割技术并行区域分割技术指
11、通过对感兴趣区域的检测,用并行方式来进行图像分割的技术。在实际应用中,并行区域分割技术主要包括以下两大类:特征空间聚类方法; 阈值化方法。5. 结合特定理论工具的分割技术基于信息论的分割技术最近几年,出现了许多借助信息论中熵的概念的图像分割方法。这些方法利用信息论当中求熵的极值的方式来进行图像分割。例如:1D最大熵法、2D最大熵法、最大后验熵法、最小熵相关法、最大香农熵法、条件熵法等等。基于小波分析和小波变换的分割技术小波变换是空间(时间)和频率的局域变换,通过平移、伸缩等运算对函数和信号进行多尺度的细化分析,有效的从信号中提取信息,从而解决了傅立叶变换不能解决的许多问题。近年来,在低频和高频
12、分析时,有“变焦”特性的小波变换在图像分割中得到广泛应用。1.2 频域图像分割 频域图像分割法就是傅里叶变换的方法,也是一种最简单的图象分割的方法。傅里叶变换一直是信号处理领域中最完美、应用最广泛、效果最好的一种分析手段,只是傅里叶变换是一种单纯对频域的分析方法,它在频域的定位性上是最准确的(即频域分辨率是最高),而在时域没有任何分辨能力,也就是表示傅里叶变换所反映的是整个信号在所有时间下的整体频域的特征,无法提供任何一段局部时间段上的频率信息。在现实生活中,经常会出现一些非平稳信号,例如音乐和语音信号等,它们的频域特征都在随着时间的变化而变化,这些信号被称为时变信号。Gabor为了研究信号在
13、局部时间范围内的频域特征,而提出了非常著名的Gabor变换,后来随着不断研究发展为短时傅里叶变换(又称加窗傅里叶变换,简称STFT)。如今短时傅里叶变换在许多领域已经得到了广泛的应用,但是它的定义决定了其窗函数的形状和大小都与频率和时间没有关系而保持固定不变,这样在分析时变信号时是不方便的2 章毓晋著. 图像分割M. 北京: 科学出版社, 2001, 78-90.。高频信号持续时间一般都比较短,相反低频信号的持续时间则相对较长,所以我们希望在分析高频信号时能够用小时间窗,同时在分析低频信号时能够用大时间窗。从中我们会发现分析信号时,变时间窗的要求与短时傅里叶变换的固定时窗中窗不能随着频率变化而
14、变化的特性相矛盾,因此这表明短时傅里叶变换无法处理这些问题;此外当人们在进行数值计算时,都希望能够将基函数离散化,从而节约存储量和计算时间,而Gabor变换则不能实现这种期望,原因是无论如何都无法构成一组正交基,所以在计算数值使很不方便,但是小波变换恰恰能实现3 李世雄编著. 小波理论及其应用M. 南开大学数学研究所计算教学年印, 1992.。小波变换继承并且发展了短时傅里叶变换的局部思想的优点,同时还克服了其窗口大小不能随着频率变化而变化,且缺少离散正交基的缺点,是一种比较理想的用来处理信号的数学工具。因此目前小波变换在图象分割中获得了广泛的应用。1.3 小波域图像分割1.3.1 图像分割的
15、描述图像分割(image segmentation)是一种非常重要的图像技术,它是图像分析与识别过程中的重要环节,其分割的结果直接关系到图像处理后期其他工作的质量,例如图像的测量、图像的识别等。一方面它是图像表达的基础,对于特征测量有着至关重要的作用;另一方面,由于图像分割及其基于分割的特征提取、目标表达和参数测量等将原始的图像形式转化为更加抽象紧凑的形式,从而使得更高层的图像分析和理解成为可能4 彭玉华著. 小波变换与工程应用M. 科学出版社, 2000.。图像分割在不同的领域中都有重要的应用,所以有时会用不同的名称,比如目标识别(target identification)技术,阈值化(t
16、hreshold)技术,目标检测(target detection)技术,目标轮廓(object delineate)技术,图像区分或求差(image discrimination)技术等,虽然这些名称看起来是不同的技术,但其实它们本身或核心都是图像分割技术,由此可以看出图像分割技术的重要性5 崔屹. 图象处理与分析-数学形态学方法及其应用M. 北京: 科学出版社, 2000.。 图1.1图像分割在图像工程中的位置其实图像分割简单地说,就是要把一幅数字图像分割成几个不同的区域,其中在同一区域内的具有在一定准则下的图像可以认为是有相同的颜色、纹理和灰度等性质,同时在任意相邻区域间的图像的性质是有
17、显著的区别。在长时间的研究中,对于图像人们提出了很多不同的解释和表达, 图像分割可以借助集合概念给出如下的定义:令整个图像的区域用集合表示,对于的分割可以看作是将分割成个满足下面五个条件的非空子集(子区域):(1);(2)对所有的和,都有;(3)对,有;(4)对,有;(5)对,是连通的区域。其中对于全部在集合中的元素,是一致性逻辑谓词,代表空集。在对图像进行研究和应用中,人们经常只是对图像中的某些部分或者是某些区域感兴趣,这些部分或者区域常被称为前景或目标(其他部分被称为背景),他们一般是对应图像中所特定的、具有独立性质的区域。为了辨识和分析目标,需要将他们从图像中分离并提取出来,只有这样才有
18、可能对目标进一步的分析利用。概括起来说,图像分割就是指把图像分成各具特性的区域并提取感兴趣的目标,从而对其进行分析、应用的技术和过程。这里特性是像素的颜色、灰度、纹理等,预先定义的目标可以是对应的单个区域,同时也可以是对应的多个区域6 陈武凡. 小波分析及其在图像处理中的应用M. 北京: 科学出版社, 2002.。1.3.2 图像分割的发展及现状 对于图像分割的研究已经有几十年的历史,人们对此一直都高度重视。早在50年代中期即计算机视觉理论体系形成以前,人们就已经开始了对图像分割的研究。能够找到一种通用的、普适的图像分割方法是人们几十年来不断追求的梦想,人们为此付出了许多艰辛的努力,但也取得了
19、不少研究成果,提出了很多图像分割算法。然而随着研究的不断深入,人们逐渐意识到,在将三维景物投影为二维图像的过程中,丢失了深度以及不可见部分的信息,不同的视角下的同一物体的图像会有很大的不同,还有会因为前后物体的遮挡而丢失信息等;另外,在场景中的很多比如物体表面几何、光源、物理特性以及成像设备与物体之间的空间特性等不同的因素,都被综合成为单一的图像中像元的灰度值;还有在成像过程中会或多或少地引入一些噪声和畸变。这些问题都直接或间接地导致了图像分割问题是一种信息不足的不确定性问题,所以不可能存在一种通用的对任何图像都适用的、统一的图像分割方法7 Donoho DL. Wavelet Shrinka
20、ge and W.V.D.A Ten-minute Tour. Progress in WaveletJ. Analysis and Application. 1993: 109-128.。在过去的四十多年里, 人们一直在高度重视图像分割的研究,至今为止,研究者提出了上千种不同类型的分割算法,如:小波分析法、水线法、匹配法、马尔可夫随机场模型法等,并且近年来每年都有上百篇相关研究成果的发表。但是,如今的方法大多是为了特定应用而设计的,具有很大的局限性和针对性,对图像分割的研究还是缺乏一个统一的理论体系。近年来,随着计算机技术的不断发展和成熟,现在的图像分割已经得到了广泛的应用,几乎出现在所有有
21、关图像处理的领域,例如在文档处理,工业自动化,生产过程控制,在线产品检验,遥感和生物医学图像分析,保安监视,以及军事,农业工程,体育等诸多领域。然而在缺乏足够先验信息的前提下进行图像分割是一项很困难的任务,如医学上人脑组织的细微变化、监控系统的随机性等,人们为了克服这一困难,建立了大量的图像模型来完成分割的任务,如利用概率分布函数刻画图像的纹理特征而建立起来的统计图像模型等。相应地也研究出了各种分割算法,如基于区域的分割、合并分割算法等。基于图像模型的分割在易于实现的同时,准确的图像模型还可以提高分割的质量,因此对图像模型的研究,不仅是各种应用的需要,而且也是分割取得突破性进展的关键问题8 陈
22、武凡, 小波分析及其在图像处理中的应用M. 北京: 科学出版社, 2002.。在国内,每年计算机辅助设计与图形学学报、中国图像图形学报等报刊都会刊登很多有关图像分割的研究成果。近几年,北京大学周蜀林主持的国家自然科学基金项目-图像分割的变分方法和应用,说明了国家对图像分割研究的重视。但目前国内外对图像分割结果的评价和准则系统的研究仍然很缺乏。1.3.3 基于适当最优准则实现图像的分割方法给定标号场的先验分布和灰度场的条件分布后,按照Bayes理论,在给定观测图像的条件下,的表达式为: (1-1)下面给出几种经常使用的图像分割标准:(1)按照MAP(maximum a posterior)准则来
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 变换 图像 分割 研究