基于AT89C52单片机的交通灯控制系统的设计(外文翻译).doc
《基于AT89C52单片机的交通灯控制系统的设计(外文翻译).doc》由会员分享,可在线阅读,更多相关《基于AT89C52单片机的交通灯控制系统的设计(外文翻译).doc(19页珍藏版)》请在沃文网上搜索。
1、电子与信息工程学院 本科毕业论文(设计)外 文 文 献 翻 译译文题目: 8-bit Microcontroller With 8K Bytes Flash AT89C52 学生姓名: 专 业: 电气工程及其自动化 指导教师: 2012年11月 外文资料8-bit Microcontroller With 8K Bytes Flash AT89C52FeaturesCompatible with MCS-51 Products8K Bytes of In-System Reprogrammable Flash MemoryEndurance: 1,000 Write/Erase CyclesF
2、ully Static Operation: 0 Hz to 24 MHzThree-level Program Memory Lock256 x 8-bit Internal RAM32 Programmable I/O LinesThree 16-bit Timer/CountersEight Interrupt SourcesProgrammable Serial ChannelLow-power Idle and Power-down ModesDescriptionThe AT89C52 is a low-power, high-performance CMOS 8-bit micr
3、ocomputer with 8K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmels high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 and 80C52 instruction set and pin out. The on-chip Flash allows the program memor
4、y to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Pin
5、ConfigurationsBlock DiagramPin DescriptionVCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 can also be configured t
6、o be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups. Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pull-ups are required during prog
7、ram verification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally
8、 being pulled low will source current (IIL) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table. Port 1 also receives t
9、he low-order address bytes during Flash programming and verification. Port 2Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used
10、as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memories that use 16-bit addresses (MOVX DPTR).
11、 In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memories that use 8-bit addresses (MOVX RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during F
12、lash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins th
13、at are externally being pulled low will source current (IIL) because of the pull-ups.Port 3 also serves the functions of various special features of the AT89C51, as shown in the following table. Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high o
14、n this pin for two machine cycles while the oscillator is running resets the device.ALE/Address Latch Enable is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input () during Flash programming. In normal operation, ALE
15、is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bi
16、t set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.Program Store Enable is the read strobe to external program memory. When the AT89C52 is executing code
17、 from external program memory, is activated twice each machine cycle, except that two activations are skipped during each access to external data memory./VPPExternal Access Enable. must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at
18、0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP ) during Flash programming when 12-volt programming is selected.XT
19、AL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Special Function RegistersA map of the on-chip memory area called the Special Function Register (SFR) space is shown in the Table 1.Note that not all o
20、f the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect. User software should not write 1s to these unlisted locations, since they may be used
21、in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.Timer 2 Registers Control and status bits are contained in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in
22、16-bit capture mode or 16-bit auto-reload mode.Interrupt Registers The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.Data MemoryThe AT89C52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a
23、parallel address space to the Special Function Registers. That means the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 AT89C52 单片机 交通灯 控制系统 设计 外文 翻译
