600MW超临界火力发电机组再热蒸汽控制系统设计课程设计.doc
《600MW超临界火力发电机组再热蒸汽控制系统设计课程设计.doc》由会员分享,可在线阅读,更多相关《600MW超临界火力发电机组再热蒸汽控制系统设计课程设计.doc(22页珍藏版)》请在沃文网上搜索。
1、摘 要本次课程设计的题目是600MW超临界机组再热汽温控制系统设计。通过对机组的再热汽温控制系统进行现场实地观察、原理分析、可靠性论证,从而提出保证该系统长期稳定处于协调控制的方案。在大型机组中,新蒸汽在汽轮机高压缸内膨胀做功后,需再送回到锅炉再热器中加热升温,然后再送入汽轮机中、低压缸继续做功。采取蒸汽中间再热可以提高电厂循环热效率,降低汽轮机末端叶片的蒸汽湿度,减少汽耗等。为了提高电厂的热经济性,大型火力发电机组广泛采用了蒸汽中间再热技术。再热蒸汽温度控制的意义与过热蒸汽温度控制一样,是为了保证再热器、汽轮机等热力设备的安全,发挥机组的运行效率,提高电厂的经济性。再热蒸汽温度控制的任务,是
2、保持再热器出口蒸汽温度在动态过程中处于允许的范围内,稳态时等于给定值。在再热蒸汽温度控制中,由于蒸汽负荷是由用户决定的,所以几乎都采用改变烟气流量作为主要控制手段,例如改变再循环烟气流量,改变尾部烟道通过再热器的烟气分流量或改变燃烧器(火嘴)的倾斜角度。本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。关键词: 再热蒸汽,过热蒸汽,串级,过热蒸汽控制。目录第一章 引言31.
3、1 设计课题的目的、意义31.2 国内外现状及发展趋势31.2.1 国内背景31.2.2 国内现状及发展趋势4第二章 再热蒸气控制系统设计方案52.1再热蒸气控制任务52.2再热蒸气控制方法5 2.2.1执行器的选择6 2.2.2变送器的选择82.2.3控制器的选择102.3再热蒸气控制总体方案12第三章 再热蒸汽温度检测控制系统163.1 再热蒸汽温度检测控制的意义与任务163.1 再热蒸汽的特点163.3 再热蒸汽温度影响因素173.4 再热蒸汽温度控制方法手段173.5 再热蒸汽温度控制小结20心得体会21参考文献22第一章 引言1.1 设计课题的目的、意义再热蒸汽温度控制的目的与过热蒸
4、汽温度控制一样,是为了保证再热器、汽轮机等热力设备的安全,发挥机组的运行效率,提高电厂的经济性。再热蒸汽温度控制的任务,是保持再热器出口蒸汽温度在动态过程中处于允许的范围内,稳态时等于给定值。随着时代的发展,实现生产过程自动化对国民经济的发展有十分重大的意义。在火力发电厂中实现热力过程自动化后能使机组安全、可靠、经济地运行。实现热力过程自动化具有:(1)提高机组运行的安全可靠性;(2)提高机组运行的经济性;(3)减少运行人员,提高劳动生产率;(4)改善劳动条件等特点。在大型机组中,新蒸汽在汽轮机高压缸内膨胀做功后,需再送回到锅炉再热器中加热升温,然后再送人汽轮机中、低压缸继续做功。采取蒸汽中间
5、再热可以提高电厂循环热效率,降低汽轮机末端叶片的蒸汽湿度,减少汽耗等。为了提高电厂的热经济性,大型火力发电机组广泛采用了蒸汽中间再热技术。因此,再热器出口蒸汽温度的控制成为大型火力发电机组不可缺少的一个控制项目。此外,再热气温如果控制不好,容易造成再热器高温腐蚀,以及联通管泄露等事故,所以再热气温的良好控制至关重要。某电厂在数年的运行中,由于负荷变化频繁,一直存在微量喷水减温器出口的再热蒸汽温度波动大的问题,出现的最大温度变化超过140。由于再热气温完全依赖喷水减温调节,使减温器后的蒸汽过热度发生很大的波动,该点的蒸汽过热度最大变化是由150快速降到接近饱和蒸汽温度。由于蒸汽温度变化大,且比较
6、频繁,经常出现很大的温度变化率,这使该处的管道经常承受很大的交变热应力,尤其是内壁承受的热应力最大,这样经过一定时间后,就会在管道的环向焊缝内侧产生裂纹,并逐渐向周围、外侧扩散,再进一步恶化就会影响锅炉的安全运行,后果严重。1.2 国内外现状及发展趋势1.2.1 国内背景火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。大型火力发电机组在国内外发展很快,我国现以300MW机组为骨干机组,并逐步发展600MW以上机组。目前,国外已经建成单机容量1000MW以上的单元机组。单元发电机组是有锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,有上千
7、个参数需要监视、操作或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,大型机组的自动化水平受到特别的重视。目前,采用以分散微机为基础的集散型控制系统(TDCS),组成一个完整的控制、保护、监视、操作及计算等多功能自动化系统。 我国自从70 年代发展125MW 等级的中间再热大型电站锅炉机组以来,紧接着有200MW ,300MW 的国产机组问世, 80 年代又相继从国外引进各种300MW 以上的炉型,均无一例外为中间再热机组,所以有关再热汽温调节问题也引起了锅炉界同仁的关注。国产锅炉的再热汽调温方式大致上经历了3个发展阶段,即:(1) 烟气再循环调温技术,早在70 年代上海锅炉厂生产的
8、配125MW 机组的400MW 锅炉采用这一技术, 其中多数是燃煤机组。 (2) 80年代中尾部分隔烟道挡板再热汽调温方式得到锅炉制造厂的青睐。随后成立的北京巴威公司生产的300MW 和600MW 锅炉也采用了这种调温方式。(3) 80年代后期随大型电站锅炉引进美国CE公司技术后,以CE公司锅炉技术特方式之一的摆动燃烧器调节再热汽温,已作为300MW 等以上容量锅炉的调温手段。此外, 汽汽热交换面式减温器也曾用于某些200MW 锅炉的再热汽温调节,但受先天性缺陷的限制,如管组和阀门的泄漏、调温幅度小和动态特性差等, 影响了其效能。近几年来, 随着各地工农业生产的迅猛发展,电力建设事业进展极快,
9、各电厂均注重降低煤耗和发电成本, 争取低价上网, 而且由于地方电网装机总量的增大, 一些200MW 甚至300MW 容量的机组作调峰运行已屡见不鲜,低负荷运行经济性已提上日程; 过去影响机组安全运行的问题多半已解决, 电厂领导和职能、运行管理人员所关心的已是“挖潜节能”, 故对于再热汽调温问题已十分重视。1.2.2 国内现状及发展趋势国内的现状是大部分执行机构老化或技术不够先进,我们国内有很好的控制理论和控制系统,但是到执行机构这里就出现问题了!就好像一个人有灵活的大脑,却有笨拙的四肢,无法很好的支配一样。彭城电厂再热器控制系统就是一例,它就是以摆动燃烧器喷嘴为主要调节,微量喷水调节为辅助调节
10、的控制手段。它的控制系统“软件”没有问题,但是执行机构这个“硬件”就有问题了:如四角不能同时摆动、执行机构卡涩、燃烧器摆角下垂(出现单个燃烧器下垂,也有整组燃烧器下垂),这些问题曾导致锅炉运行中燃烧不稳定,甚至造成锅炉灭火。经多次检修处理,却不能解决这些问题,不得不将燃烧器摆角固定在一定的角度,不再参与再热汽温调节。因此微量喷水调节就成为正常工况下汽温调整的唯一手段。由于完全依赖喷水调节再热汽温,导致运行过程中所投入的减温水量超过设计值。如在额定设计工况下减温水用量是5.0 t/h,实际中需投用减温水量达到2030 t/h。喷水量大幅度地频繁变化,导致减温器后的汽温变化幅度超过规定范围,对减温
11、器后的管道产生更大的热应力。国内发展趋势是尽量恢复燃烧器摆角作为再热汽温的主调节手段;改善被控对象的控制品质;负荷变化时,使再热汽温尽可能稳定。第二章 再热器气温控制系统设计方案2.1再热蒸汽控制任务为了提高大容量、高参数机组的循环效率,并防止汽轮机末级蒸汽带水,需采用中间再热系统。提高再热汽温对于提高循环热效率是十分重要的,但受金属材料的限制,目前一般机组的再热蒸汽温度都控制在560以下。另一方面,在锅炉运行中,再热器出口温度更容易受到负荷和燃烧工况等因素的影响而发生变化,而且变化的幅度也较大,如果不进行控制,可能造成中压缸转子与汽缸较大的热变形,引起汽轮机振动。再热蒸汽温度控制系统的任务是
12、将再热蒸汽温度稳定在设定之上。此外,在低负荷、机组甩负荷或汽轮机跳闸时,保护再热器不超温,以保证机组的安全运行。2.2 再热蒸汽控制方法再热蒸汽温度调节采用调节延期挡板,摆动火嘴和喷水减温的控制方式。 按设计,再热蒸汽温度正常情况下由烟气挡板的摆动来控制。也就是说一般以采用烟气控制的方式为主,这比采用喷水控制有较高的热经济性。 1.采用烟气挡板控制再热汽温的控制系统 采用烟气挡板需把尾部烟道分成两个并联烟道,在主烟道中布置低温再热器,旁路烟道中布置低温过热器。在低温过热器下面布置省煤器,调温挡板则布置在工作条件较好的省煤器下面。主,旁两侧挡板的动作是相反的,即再热器侧开,过热器侧关,反之亦然。
13、2、摆动火嘴:摆动燃烧器火嘴倾角是设计用来调节再热汽温的正常手段,它是一个带前馈信号的单回路调节系统。在锅炉A,B侧末级再热器出口联箱上各装有两个出口蒸汽温度测点,可由运行人员在OIS上手动选择每侧的某一测点或两个测点的平均值作为本次再热汽温控制使用。根据主蒸汽流量经函数发生器给出的随机组负荷变化的再热汽温设定值,与运行人员手动设定值经小值选择器后与再热蒸汽测量值进行比较,偏差进入控制器。控制器设计为SMITH预估器和PID调节器互相切换的方式,两者只能由一个起控制作用,可由热控工程师通过软件调节。为了提高再热汽温在外扰下的调节品质,控制回路设计了机组负荷和送风量经函数发生器给出的前馈信号。根
14、据再热汽温的偏差经控制器的控制运算后在加上前馈信号,形成了对燃烧器火嘴倾角的控制指令,这个指令信号分四路并列输出去驱动炉膛四角的燃烧器火嘴倾角。当进行炉膛吹扫时,火嘴倾角将被自动连锁到水平位置。3、喷水减温:喷水减温只起辅助或保护性质的减温作用。每侧的再热汽温有两个测量信号,当摆动火嘴在自动控制状态时,喷水减温的再热汽温设定在摆动火嘴控制系统设定值的基础上加上根据摆动火嘴控制指令经函数发生器给出的偏置量,意在当摆动火嘴有调节与低时抬高喷水减温控制系统设定值以确保喷水减温阀门关死。当摆动火嘴控制指令接近下限而将失去调节余地时,该偏置量应该减小到零以便再热汽温偏高时喷水阀门接替摆动火嘴的减温手段。
15、由于喷水减温系统只是设计用作辅助调节手段,故系统设计比较简单,再热汽温设定值与测量值的偏差经PID调节器后直接作为喷水减温阀门开度指令,控制器未设计SMITH预估器,也未设计任何前馈信号2.2.1执行器的选择一、作用 控制机构与执行机构合称执行器,它是电厂热工自动控制系统的执行环节。执行器接受控制器或人工给定的控制信号。将其进行功率放大,并转换为输出轴相应的转角或直线位移,连续或断续地推动各种控制机构。如控制阀(或调节阀)、挡板,以完成对各种参量的控制。二、分类执行器根据所使用的能源形式,可分成气动、电动和液动三大类。气动执行器是利用压缩空气作为能源;电动和液动执行器分别利用电和高压液体作为能
16、源。在火电厂中,气动和电动使用较多,液动使用较少。执行器根据输出位移量的不同,又分为角位移(或角行程)执行器和线位移(或直行程)执行器。三、特点及应用1电动执行器(1)采用电源为动力, 使用方便,无需特殊的气源和空气净化装置。电源消失时,能保持原来位置。 (2)可以远距离传输信号,电缆的安装比气管方便。且便于检查。 (3)体积小、推力较大、定位精度高、反应快、滞后时间短。 (4)与计算机控制系统连接方便。而且本身也可智能化(内装微处理机),智能电动执行器是执行器的发展方向。 电动执行器的缺点是结构复杂,价格较高,不适用于防火防爆场合,频繁启停易损害电机或阀门。目前,在火电厂中应用的电动执行器,
17、除DDZ-I、型外,还有引进型电动执行器。如:德国西门子的M76346系列和MAM393系列、法国伯纳德的SD系列、英国罗托克M系列和A系列。此外,还有DDZS型智能电动执行器等。2气动执行器气动执行器的主要优点是;结构简单、工作安全可靠、价格便宜、维护方便、运行平稳、不损坏阀门或设备、负载能力大、天然防火防爆;缺点是:体积大、不便与计算机控制系统连接、需要气源和空气净化装置、气信号不便远传。气动执行器主要有薄膜式和活塞式两大类,并以薄膜式应用最广。在电厂气动基地式自动控制系统中,常采用这类执行器。气动活塞式执行器由气缸内的活塞输出推力,并容易制造成长行程的执行器。所以,气动活塞式执行器特别适
18、用于高静压、高差压以及需要较大推力和位移(转角或直线位移)的工艺场合,如火电厂中的给水、减温水控制阀和送、引风挡板开度的控制。常用的型号为;ZSLD-A、ZSZ、ZSL及MDQZ型,此外还有从国外引进的气动执行器。3液动执行器液动执行器的优缺点与气动执行器基本相同,只是它的响应速度更快,输出推力更大,在电厂中常作为汽轮机控制系统的执行器,如电液伺服执行器(简称EH)。执行器是自动控制系统中不可缺少的重要设备。因此,只有了解和掌握执行器的作用、特点、工作原理和维修调整技能,才能保证热工自动控制系统的安全投入,使火电机系统机组安全运行。在本系统中,调节阀是系统的执行机构,是按照控制器所给定的信号大
19、小和方向,改变阀的开度,以实现调节流量的装置。调节阀的口径的大小,直接决定着控制介质流过它的能力。为了保证系统有较好的流通能力,需要是控制阀两端的压降在整个管线的总压降占有较大的比例。在正常工况下,一般要求调节阀开度应处于15%85%之间,应具体根据实际需要的流通能力的大小进行选择。调节阀按驱动方式可分为:气动调节阀、电动调节阀和液动调节阀,即以压缩空气为动力源的气动调节阀,以电为动力源的电动调节阀,以液体价值压力为动力源的液动调节阀,由于生产现场有防爆要求,所以应选择气动执行器。调价阀的开、关形式需要考虑到以下几种因素:1生产安全角度:当起源供气中断,或调节阀出故障而无输出等情况下,应该确保
20、生产设备的安全,不至发生事故;2保证产品质量:当发生控制阀处于无源状态而恢复到初始位置时,产品的质量不应降低;3尽可能的降低原料、产品、动力耗损;4从介质的特点考虑。2.2.2变送器的选择热电偶温度变送器与各种测温热电偶配合使用,可将温度信号线性地转换成为420mADC电流信号或15VDC电压信号输出,它是由量程单元和放大单元两部分组成的。热电偶温度变送器的主要特点是采用非线性负反馈回路来实现线性变化。这个特殊的性质反馈回路能按照热电偶温度毫伏信号间的非线性关系调整反馈电压,以保证输入温度t与整机输出 或 间的线性关系。零点调整、量程调整电路的工作原理与直流毫伏变送器大致相仿。所不同的是:在热
21、电偶温度变送器的输入回路中增加了由铜电阻 等元件组成的热电偶冷端温度补偿电路;同时把调零电位器 移动到了反馈回路的支路上;在反馈回路中增加了运算放大器 等组成的线性化电路起线性化作用,图1热电偶温度变送器所示。由于锅炉炉膛内的温度值较高,所以选用的热电偶变送器的温度测量值必须达到要求,这里,我选用的是DBW-1150型热电偶温度变送器。DBW-1150型热电偶温度变送器是DDZ-III系列仪表的主要品种。本温度变送器用热电偶作为测温元件,将被测温度线性地转换成标准信号1-5VDC或4-20mADC输出,供给指示、记录、凋节器、计算机等自动化监控系统。 图1热电偶温度变送器技术参数:输 入: 标
22、准热电偶 输 出: 输出电流:420mADC 输出电压:15VDC 输出电阻:250 允许负载变化范围:100量 程: 01600冷端补偿误差: 1温度漂移: 0.1基本误差/1绝缘电阻: 电源、输入与输出端子间100M 绝缘强度: 电源/输入/输山端子间1500VAC/分钟 工作条件: 环境温度:050 相对湿度:90%(RH)电源电压: 24VDC5%功 耗: 2W防爆等级: IICT6重 量: 2Kg2.2.3 控制器的选择 (1)采用模拟控制器:DDZIII型调节器控制器的输入信号为15V的测量信号。设定信号有内设定和外设定两种。内设定信号为15V,外设定信号为420mA。测量信号和设
23、定信号通过输入电路进行减法运算,输出偏差到比例积分微分电路进行比例积分微分运算后,由输出电路转换为420mA信号输出。手动电路和保持电路附于比例积分微分电路之中,手动电路可实现软手动和硬手动两种操作,当处于软手动状态时,用手指按下软手动操作键,使控制器输出积分式上升或下降,当手指离开操作键时,控制器的输出值保持在手指离开前瞬间的数值上,当控制器处于硬手动状态时,移动硬手动操作杆,能使控制器的输出快速改变到需要的数值,只要操作杆不动,就保持这一数值不变。由于有保持电路,使自动与软手动相互切换,硬手动只能切换到软手动,都是无平衡无扰动切换,只有软手动和自动切换到硬手动需要事先平衡才能实现无扰动切换
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 600 MW 临界 火力发电 机组 蒸汽 控制系统 设计 课程设计