空间立体几何高考知识点总结及经典题目.docx
《空间立体几何高考知识点总结及经典题目.docx》由会员分享,可在线阅读,更多相关《空间立体几何高考知识点总结及经典题目.docx(12页珍藏版)》请在沃文网上搜索。
1、 空间立体几何知识点归纳:1. 空间几何体的类型(1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。(2) 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。如圆柱、圆锥、圆台。2.一些特殊的空间几何体直棱柱:侧棱垂直底面的棱柱。 正棱柱:底面多边形是正多边形的直棱柱。正棱锥:底面是正多边形且所有侧棱相等的棱锥。正四面体:所有棱都相等的四棱锥。3.空间几何体的表面积公式棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 : 圆锥的表面积:圆台的表面积: 球的表面积:4空间几何体的体积公式柱体的体积 : 锥体的体积 : 台体的体积 : 球体的体积: 5.空间几何体
2、的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。画三视图的原则:长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。6 .空间中点、直线、平面之间的位置关系(1) 直线与直线的位置关系:相交;平行;异面。(2) 直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。(3) 平面与平面的位置关系:平行;相交。7. 空间中点、直线、平面的位置关系的判断(1)线线平行的判断: 平行公理:平行于同一直线的两直线平行。线面平
3、行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 线面垂直的性质定理:垂直于同一平面的两直线平行。(2)线线垂直的判断: 线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。线线垂直的定义:若两直线所成角为900,则两直线垂直一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。(3)线面平行的判断: 线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。面面平行的性质定理:两个平面平行,其中一个平面内的
4、直线必平行于另一个平面。(4)线面垂直的判断: 线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。如果两个平面垂直,那么在个平面内垂直于交线的直线必垂直于另个(5)面面平行的判断: 面面平行的判定定理:一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。垂直于同一条直线的两个平面平行。(6)面面垂直的判断: 面面垂直的判定定理:一个平面经过另一个平面的垂线,这两个平面互相垂直。 8.空间中直线与直线、直线与平面、平面与平面所成角
5、(1)异面直线所成的角 已知a、b是两条异面直线,经过空间任意一点O,分别引直线aa,bb,则a和b所成的锐角(或直角)叫做异面直线a和b所成的角.异面直线所成的角的求法:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:;(2)直线与平面所成的角一条直线l与平面相交于A,在直线l取一点P(异于A点),过P作平面的垂线,垂足为O,则线段AO叫做直线l在平面内的射影,直线l与射影AO所成角就叫做直线l与平面所成的角。直线与平面所成角的范围:(3)平面与平面所成角二面角的定义:由一条棱出发的两个半平面组成的图形。 二面角的平面角:在二面角的棱上任取一点O,过O分
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 立体几何 高考 知识点 总结 经典 题目