基础生物化学.doc
《基础生物化学.doc》由会员分享,可在线阅读,更多相关《基础生物化学.doc(86页珍藏版)》请在沃文网上搜索。
1、基础生物化学第一章 绪论一、生物化学及其研究内容我们所处在的地球充满着无数的生物,从最简单的病毒、类病毒到菌、藻、树、草,从鱼虫鸟兽到最复杂的人类,处处都可以发现它们的踪迹,觉察到生命的活动。地球上的生物形形色色,千姿百态。不同的生物,其形态、生理特征和对环境的适应能力各不相同,都经历着生长、发育、衰老、死亡的变化,都具有繁殖后代的能力。(一) 生物化学的概念和研究内容1生命的定义生命的根本特性是什么?千百年来,人们以许多不同的观点阐述自己对此的看法。19世纪下半叶时,恩格斯给生命下了一个定义:“生命是蛋白体的存在方式,这个存在方式的基本因素在于和它周围的外部自然界的不断地新陈代谢,而且这种新
2、陈代谢一停止,生命就随之停止,结果便是蛋白质的分解。”恩格斯的生命定义在一定程度上揭示了生命的物质基础,即具有新陈代谢功能的蛋白体。100年来,这个定义一直指导人们认识生命的思想武器。生命是一个很难下定义 :(1)生理学定义 例如把生命定义为具有进食、代谢、排泄、呼吸、运动、生长、生殖等功能的系统。但某些细菌却不呼吸。 (2)新陈代谢定义 生命系统具有界面,与外界经常交换物质但不改变其自身性质。 (3)生物化学定义 生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。但是已知某种病毒生物却无核酸(阮病毒)。 (4)遗传学定义 通过基因复制、突变和自然选择而进化的系统。 (5)热力学定义 生命是个
3、开放系统,它通过能量流动和物质循环而不断增加内部质量。Horowitz 观点: 具有复制的能力 具有催化的能力 具有突变的能力2生命的构成19世纪30年代,德国植物学家施莱登首先指出,所有植物体都是由细胞构成的。他的这个观点被德国动物学家施旺在动物组织和细胞研究中证实,所有动物也是由细胞构成的。施旺指出:“细胞是有机体,整个动物或植物体乃是细胞的集合体。它们依照一定的规律排列在动物体内。”在此基础上他们创立了细胞学说。细胞是组成生物体的基本结构单元,是生物体进行代谢、能量转换、遗传以及其它生理活动的基本场所。恩格斯把细胞学说、能量守恒和转换定律、达尔文进化论一起誉之为19世纪自然科学的三大发现
4、。由于细胞的发现,我们不仅知道一切高等有机体都是按照一个共同规律发育和生长的,而且通过细胞的变异,能改变自己,向更高的发育道路迈进。3 细胞的分类和结构所有的生物都是由细胞组成的,只是不同的生物体细胞的大小和形状有所不同。有的细胞人的眼睛可以看得见,如鸟类的蛋,最大的直径近10厘米(鸵鸟蛋)。有的细胞直径只有0.1微米,要用高倍显微镜才能看到,如原始的细菌。大多数细胞的直径是10-100微米,用低倍显微镜就能看到。细胞的大小,即使在同一生物体的相同组织中也不一样。同一个细胞,处在不同发育阶段,它的大小也是会改变的。根据生物的进化程度,细胞可以分为两大类:原核细胞(Prokaryote cell
5、)和真核细胞(Eukaryote cell)(1)原核细胞原核细胞是一类进化程度低,结构最简单的一类细胞。属于原核细胞的有细菌(Bacteria)和蓝藻(blue-green algae)等。原核细胞的特点:原核细胞的外层是细胞壁和细胞膜(质膜),内部为细胞质。细胞质的结构非常简单,没有明显的细胞器(由封闭的生物膜包裹的固体质粒),只有原始的细胞核(无核膜和核仁)和其它一些核糖核蛋白体等。(2)真核细胞真核细胞是高等植物和动物的基本组织单位。真核细胞的结构特点:真核细胞的外层为细胞膜(植物细胞还有一层细胞壁),内部为细胞质。细胞质的结构非常复杂,含有许多细胞器,主要有:细胞核、线粒体、核糖核蛋
6、白体、高尔基体和溶酶体等。植物细胞中还含有质体、叶绿体和液泡等。各个细胞器具有不同的生物功能,它们之间的协调运作,使细胞内的代谢和各种生理活动能够有条不紊地进行。4生物体的化学组成(1)生命体的元素组成组成生命体的物质是极其复杂的。但在地球上存在的92种天然元素中,只有以下元素在生物体内被发现第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。这四种元素约占了生物体总质量的99%以上。第二类元素:包括S、P、Cl、Ca、K、Na和Mg。这类元素也是组成生命体的基本元素。第三类元素:包括Fe、Cu、Co、Mn和Zn。是生物体内存在的主要少量元素。第四类元素:包括Al、As、B、Br
7、、Cr、F、Ga、I、Mo、Se、Si等。自然界所有的生命物体都由三类物质组成水、无机离子和生物分子。其中生物分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。生物分子的主要类型包括:糖、脂、核酸和蛋白质等生物大分子及维生素、辅酶、激素、核苷酸和氨基酸等有机小分子。5 生物化学的概念:生物化学可以认为是生命的化学,主要是应用化学的理论和方法研究微生物、植物、动物及人体等的化学组成、生命物质各组分的结构和性质、及它们在生命过程中的变化规律的一门科学。6生物化学的基本内容包括:(1)发现和阐明构成生命物体的分子基础-生物分子的化学组成、结构和性质;(2)生物分子的结构、功能与生
8、命现象的关系;(3)生物分子在生物机体中的相互作用及其变化规律(物质代谢、能量代谢、信息代谢)二、生物化学的发展 生物化学作为一门独立的自然科学,只有近200年的历史。但是其发展非常迅速,目前已成为自然科学领域发展最快、最引人注目的学科之一。1 我国古代劳动人民的贡献(1)制饴、酿酒、制醋、制酱技术;掌握生产豆腐的工艺(贾思勰的齐民要术; 齐民要术是我国最早的一部完整的古农书。(2)对脚气病(多发性神经炎)和甲状腺肿的认识与治疗。(3)本草纲目(李时珍)2 近代生物化学的发展(1)萌芽时期(18世纪下半叶19世纪初)-静态生物化学阶段Scheele:瑞典化学家,分离得到甘油、柠檬酸、苹果酸、乳
9、酸、尿酸、酒石酸等。Lavosier:法国化学家a. 首次证明动物的呼吸需要氧气;b. 同时证明燃烧过程是物质与氧的结合过程。Liebig:德国化学家,是农业化学的奠基人,也是生物化学和碳水化合物化学的创始人之一。首次提出新陈代谢这个学术名词。发现了马尿酸、氯仿。Wohler:与Liebig在同一个实验室,1828年在实验室合成了尿素。从而推翻了有机化合物只有在生物体内部合成的错误认识。从此生物体内糖类、脂类及氨基酸等均被详尽的研究。Ernst Felix Hoppe-Seyler:德国医生,1877年提出“Biochemie”即英文的“Biochemistry”.(Miescher是他的学生
10、)(2)奠基时期(19世纪20世纪)-动态生物化学阶段:科学家对生物物质代谢、平衡等进行了广泛深入的研究,基本阐明了酶的化学本质以及与能量代谢有关的物质代谢途径。Summer:美国科学家,1926年得到脲酶的结晶,证明了酶的化学本质是蛋白质。Embden:德国生物化学家,在糖代谢、脂代谢及肝脏合成氨基酸方面做出了巨大贡献,与他人一起证明了糖酵解途径。 Krebs:英国人,发现了尿素循环和三羧酸循环。Calvin:美国人,发现了光合碳代谢途径。光合磷酸化过程。Abel:1902年分离得到肾上腺素并制成结晶。Went:1926年从燕麦胚芽鞘中分离出生长素。Hopkins:英国剑桥生物化学中心,19
11、12年前后发现维生素(3)大发展时期(1930-至今)-机能生物化学阶段:科学家对生物的研究已从整体水平逐步深入到细胞、亚细胞、分子水平。伴随实验手段、技术的不断改进,使的对生物大分子结构及功能的研究也更加深入。 糖酵解、三羧酸循环、脂代谢、氧化磷酸化等生化反应过程均被阐述。.Watson,Crick首次描绘了DNA双螺旋结构模型,使人们第一次获知基因结构的实质。.英国物理学家Perutz用X-射线衍射技术,解析了血红蛋白的三维空间结构;Kendrew测定了肌红蛋白的结构。英国化学家Sanger利用10年时间完成牛胰岛素的结构测定。 美国化学家Pauling确认氢键在蛋白质结构中和大分子相互作
12、用中的重要性;还研究了镰刀型红细胞贫血病,提出分子病的名称。3. 我国科学家在近代生物化学发展史中的贡献1919-1922,吴宪提出用比色法测定血糖1924-1942,吴宪提出蛋白质变性学说汤佩松、殷宏章等在呼吸代谢、酶作用机理等方面作出突出的贡献1965年,人工合成具有生物学活性的牛胰岛素;1973年,测定了猪胰岛素的空间结构;1983年,完成酵母丙氨酸tRNA的人工合成。植物收缩蛋白的研究(阎隆飞等)生物膜结构与功能研究(杨福愉、黄芬等)蛋白质合成后的转运(信号肽、分子伴侣)三、生物化学与其他学科间的关系1. 各学科之间的联系2. 生物化学知识的应用工业方面:食品工业、化妆品工业、发酵工业
13、、 制革工业、国防工业、环保工业等。农业方面:优质、高产品种培育、优良品种鉴定、生物肥料、生物农药等。医药业: 疾病诊治、生化制药、基因治疗等。生物技术:基因工程、细胞工程、酶工程、发酵工程等。四、课程安排及其学习方法第二章 蛋白质蛋白质存在于所有的生物细胞中,是构成生物体最基本的结构物质和功能物质。蛋白质是生命活动的物质基础,它参与了几乎所有的生命活动过程。引言:蛋白质概述一、 蛋白质的化学组成1.元素组成:蛋白质是一类含氮有机化合物,除含有碳、氢、氧外,还有氮和少量的硫。某些蛋白质还含有其他一些元素,主要是磷、铁、碘、钼、锌和铜等。这些元素在蛋白质中的组成百分比约为: 碳 50-55% 氢
14、 6.5-7.3 氧 19-24 氮 16% 硫 0-3 其他 微 量大多数蛋白质的含氮量接近于16%,这是蛋白质元素组成的一个特点,也是凯氏(Kjedahl)定氮法测定蛋白质含量的计算基础。所以,可以根据生物样品中的含氮量来计算蛋白质的大概含量:蛋白质含量=蛋白氮x 6.256.25为蛋白质系数,即1克氮所代表的蛋白质量(克数)2. 分子组成: 经酸、碱和酶处理蛋白质,使其彻底水解得到产物为氨基酸,组成蛋白质的常见20种氨基酸中除脯氨酸外,均为a-氨基酸:二、 蛋白质的大小和分子量蛋白质是分子量很大的生物分子。对任一种给定的蛋白质来说,它的所有分子在氨基酸的组成和顺序以及肽链的长度方面都应该
15、是相同的,即所谓均一的蛋白质。蛋白质分子量的变化范围很大,从大约6000到1000000道尔顿(Da)或更大。某些蛋白质是由两个或更多个蛋白质亚基(多肽链)通过非共价结合而成的,称寡聚蛋白质。有些寡聚蛋白质的分子量可高达数百万甚至数千万。(TMV:4x107)三、蛋白质功能的多样性1 酶类2 结构蛋白类3 转运蛋白类4 收缩或运动蛋白类5 保护和防御蛋白类6 营养和储存蛋白类7 调节蛋白类8 其他蛋白(受体蛋白、毒素蛋白、激素蛋白等)第一节 蛋白质的基本结构单位氨基酸(amino acid)一、蛋白质的水解蛋白质和多肽的肽键与一般的酰胺键一样可以被酸碱或蛋白酶催化水解,酸或碱能够将多肽完全水解
16、,酶水解一般是部分水解。完全水解得到各种氨基酸的混合物,部分水解通常得到多肽片段。最后得到各种氨基酸的混合物。所以,氨基酸是蛋白质的基本结构单元。大多数的蛋白质都是由20种氨基酸组成。这20种氨基酸被称为基本氨基酸。1、酸水解常用6 mol/L的盐酸或4 mol/L的硫酸在105-110条件下进行水解,反应时间约20小时。此法的优点是不容易引起水解产物的消旋化,得到的是L-氨基酸。缺点是色氨酸被沸酸完全破坏;含有羟基的氨基酸如丝氨酸或苏氨酸有一小部分被分解;天门冬酰胺和谷氨酰胺侧链的酰胺基被水解成了羧基。2、碱水解一般用5 mol/L氢氧化钠煮沸10-20小时。由于水解过程中许多氨基酸都受到不
17、同程度的破坏,产率不高。部分的水解产物发生消旋化,其产物是D-型和L-型氨基酸的混合物。该法的优点是色氨酸在水解中不受破坏。3、酶水解目前用于蛋白质肽链断裂的蛋白水解酶(proteolytic enzyme)或称蛋白酶(proteinase)已有十多种。应用酶水解多肽不会破坏氨基酸,也不会发生消旋化。水解的产物为较小的肽段。 最常见的蛋白水解酶有以下几种:胰蛋白酶、糜蛋白酶、胃蛋白酶、嗜热菌蛋白酶。三、 氨基酸的分类(一)根据来源分:内源氨基酸和外源氨基酸(二)从营养学角度分:必需氨基酸和非必需氨基酸Ile Met Val Leu Trp Phe Thr Lys一 家 写 两 三 本 书 来(
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 生物化学