传感器技术实验报告金属箔式应变片——单臂电桥性能实验.docx
《传感器技术实验报告金属箔式应变片——单臂电桥性能实验.docx》由会员分享,可在线阅读,更多相关《传感器技术实验报告金属箔式应变片——单臂电桥性能实验.docx(30页珍藏版)》请在沃文网上搜索。
1、传感器与检测技术实验报告 实验一 金属箔式应变片单臂电桥性能实验一、 实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能。二、 基本原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应。描述电阻应变效应的关系式为:式中:为电阻丝电阻相对变化,K为应变灵敏系数,为电阻丝长度相对变化。金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化。电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压。三、 实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。四、 实验步骤1. 根据接线示意
2、图安装接线。2. 放大器输出调零。将实验模板上的放大器两输入端口引线暂时脱开,再用导线将两输入端短接();调节放大器的增益电位器RW3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈;将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关,调节实验模块放大器的调零电位器RW4,使电压表显示为零。3. 电桥调零。检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。4. 应变片单臂电桥实验。在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表五、 实验数据记录及分析测得数据如下:重量(g)204060801001201
3、40160180200电压(mv)4101520253035404651实验曲线如下所示:分析:由图可以看出,输出电压与加载的重量基本成线性关系,5. 根据表中数据计算系统的灵敏度(为输出电压变化量,为重量变化量)和非线性误差,式中为输出值(多次测量时为平均值)与拟合直线的最大偏差;为满量程输出值,此处为51mv。=51mv,=200g,所以=0.6909mv,=51mv,所以六、 思考题单臂电桥工作时,作为桥臂电阻的应变片应选用:(1)正(受拉)应变片;(2)负(受压)应变片;(3)正、负应变片均可以。答:应变片受拉,所以选(1)正应变片。实验二 金属箔片应变片半桥性能实验一、实验目的比较半
4、桥与单臂电桥的不同性能、了解其特点二、基本原理不同受力方向的两只应变片接入电桥作为邻边,电桥暑促灵敏度提高,非线性得到改善。当应变片阻值和应变量相同时,其桥路输出电压。三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。四、实验步骤1.根据接线示意图安装接线。2.放大器输出调零。具体做法如实验一3.电桥调零。具体做法如实验一4.应变片半桥实验。具体做法如实验一五、实验数据记录及分析实验结果如下:重量(g)20406080100120140160180200电压(mv)112031425160728190101实验曲线如下所示:分析:从图中可见,输出电压与加载重量成线性。数据点与
5、拟合直线相对单臂更为接近,即线性性更好。5.根据表中数据计算系统的灵敏度(为输出电压变化量,为重量变化量)和非线性误差,式中为输出值(多次测量时为平均值)与拟合直线的最大偏差;为满量程输出值,此处为101mv。=101mv,=200g,所以=0.4182mv,=101mv,所以六、思考题1.半桥测量时,两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边;(2)邻边。答:(2)邻边。2.半桥测量时,两片相同受力状态的电阻应变片接入点桥时,应放在:(1)对边;(2)邻边。答:(1)对边。3.桥路测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性;(2)应变片应变效应是非线性的;(
6、3)调零值不是真正为零。答:(1)电桥测量原理上存在非线性;(2)应变片应变效应是非线性的。实验三 金属箔式应变片全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。当应变片初始阻值R1=R2=R3=R4、其变化值时,其桥路输出电压。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善。三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等。四、实验步骤1.根据接线示意图安装接线。2.放大器输出调零。3.电桥调零。4.应变片全桥实验五、实验数据记录及分析数据记录如下表所示:重量(g)2
7、0406080100120140160180200电压(mv)20416281101122141162182201实验曲线如下所示:分析:从图中可见,数据点基本在拟合曲线上,线性性比半桥进一步提高。根据表中数据计算系统的灵敏度(为输出电压变化量,为重量变化量)和非线性误差,式中为输出值(多次测量时为平均值)与拟合直线的最大偏差;为满量程输出值,此处为204 mv。=204mv,=200g,所以=0.3636mv,=204mv,所以六、思考题1.测量中,当两组对边电阻值R相同时,即R1=R3,R2=R4,而R1R2时,是否可以组成全桥:(1)可以;(2)不可以。答:(2)不可以。2.某工程技术人
8、员在进行材料拉力测试时在棒材上贴了两组应变片,能否及如何利用四组应变片组成电桥,是否需要外加电阻。答:能够利用它们组成电桥。对于左边一副图,可以任意选取两个电阻接入电桥的对边,则输出为两倍的横向应变,如果已知泊松比则可知纵向应变。对于右边的一幅图,可以选取R3、R4接入电桥对边,则输出为两倍的纵向应变。两种情况下都需要接入与应变片阻值相等的电阻组成电桥。3.金属箔式应变片单臂、半桥、全桥性能比较比较单臂、半桥、全桥输出时的灵敏度和非线性度,根据实验结果和理论分析,阐述原因,得出相应的结论。答:根据实验结果可知:灵敏度:全桥半桥单臂非线性度:单臂单桥全桥理论上:灵敏度:单臂,半桥,全桥。非线性度
9、:单臂,半桥,全桥。因为全桥能使相邻两臂的传感器有相同的温度特性,达到消除温度误差的效果。同时还能消除非线性误差。结论:利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差。4.金属箔式应变片的温度影响电阻应变片的温度影响主要有两个方面。敏感栅丝的温度系数如何消除金属箔式应变片的温度影响?答:利用温度补偿片或采用全桥测量。实验五 差动变压器的性能实验一、实验目的了解差动变压器的工作原理和特性。二、基本原理差动变压器由一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有两段式和三段式,本实验采用三段式。当被测物体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次
10、级线圈之间的互感发生变化促使次级线圈感应电势产生变化。将两只次级反向串接,引出差动电势输出。其输出电势反映出被测物体的移动量。三、实验器材主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器、万用表、导线等。四、实验步骤1.按照接线图连接线路。2.差动变压器L1的激励电压从主机箱中的音频振荡器的Lv端引入,音频振荡器的频率为45KHz,输出峰峰值为2V。3.松开测微头的紧固螺钉,移动测微头的安装套使变压器次级输出的Vp-p较小。然后拧紧螺钉,仔细调节测微头的微分筒使变压器的次级输出Vp-p为最小值(零点残余电压),定义为位移的相对零点。4.从零点开始旋动测微头的微分筒,每隔0.2mm从示
11、波器上读出示波器的输出电压Vp-p,记入表格中。一个方向结束后,退到零点反方向做相同的实验。5.根据测得数据画出Vop-p X曲线,做出位移为1mm、3mm时的灵敏度和非线性误差。数据表格如下:X(mm)-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.20.0V(mv)262.5232.5206.5174152128.596.578.547.530X(mm)0.20.40.60.81.01.21.41.61.8V(mv)48.578.597.5128.5152174205231.5262.5实验曲线如下:分析:从图中可见,曲线基本呈线性,关于x=0对称的,在零点时存在一个
12、零点误差。X=1mm时,。五、思考题1.用差动变压器测量,振动频率的上限受什么影响?答:受导线的集肤效应和铁损等的影响,若频率过大会导致灵敏度下降。2.试分析差动变压器与一般电源变压器的异同?答:相同点:利用电磁感应原理工作。不同点:差动变压器为开磁路,一、二次侧间的互感随衔铁移动而变,且两个绕组按差动方式工作;一般变压器为闭合磁路,一、二次侧间的互感为常数。实验八 差动变压器的应用振动测量实验一、实验目的了解差动变压器测量振动的方法。二、基本原理由差动变压器性能实验基本原理可知,当差动变压器的铁芯连接杆与被测体连接时就能检测到被测体的位移或振动。三、实验器材主机箱、差动变压器、差动变压器实验
13、模板、移相器、相敏检波器、滤波器模板、振动源、示波器。四、实验步骤 1、将差动变压器按图3-5 卡在传感器安装支架的U 型槽上,并拧紧差动变压器的夹紧螺母;调整传感器安装支架,使差动变压器的铁芯连杆与振动台中心点磁钢吸合,并拧紧传感器安装支架压紧螺帽;再调节升降杆使差动变压器铁芯大约处于线圈的中心位置。2、按图接线,并调整好有关部分,调整如下:(1)检查接线无误后,合上主机箱电源开关,用频率表、示波器监测音频振荡器 LV 的频率和幅值,调节音频振荡器的频率、幅度旋钮,使Lv输出 45KHz、Vp-p=2V 的激励电压。(2)用示波器观察相敏检波器输出(图中低通滤波器输出接的示波器改接到相敏检波
14、器输出),调节升降杆(松开锁紧螺钉转动升降杆的铜套)的高度,使示波器显示的波形幅值为最小。(3)仔细调节差动变压器实验模板的 RW1 和 RW2(交替调节)使示波器(相敏检波器输出)显示的波形幅值更小,基本为零点。(4)用手按住振动平台(让传感器产生一个大位移)仔细调节移相器和相敏检波器的旋钮,使示波器显示的波形为一个接近全波整流波形。(5)松手,整流波形消失变为一条接近零点线(否则再调节 RW1 和 RW2)。(6)振动源的低频输入接上主机箱的低频振荡器,调节低频振荡器幅度旋钮和频率旋钮,使振动平台振荡较为明显。用示波器观察相敏检波器输出及低通滤波器输出波形。3、保持低频振荡器的幅度不变,改
15、变振荡频率,用示波器观察低通滤波器的输出,读出峰峰电压值,记下实验数据,填入下表 3-3。表 3-3f(Hz)369121518212427Vp-p(V)0.5140.891.1431.2100.4530.2680.2170.1630.1194、根据实验结果作出梁的振幅频率特性曲线,指出自振频率的近似值,并与实验四使用应变片测出的结果相比较。5、保持低频振荡器频率不变,改变振荡幅度,同样可得到振幅与电压峰峰值Vp-p 曲线(定性)。6、注意事项:低频激振电压幅值不要过大,以免梁在自振频率附近振幅过大。实验完毕,关闭电源。实验九 电容式传感器的位移实验一、实验目的了解电容式传感器结构及其特点。二
16、、基本原理利用电容CAd的关系式,通过相应的结构和测量电路,可以选择、A、d三个参数中保持二个参数不变,而只改变其中一个参数,就可以组成测介质的性质(变)、测位移(d变)和测距离、液位(A变)等多种电容传感器。本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图3-6所示:由二个圆筒和一个圆柱组成。设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=2 ln(Rr)。图中C1、C2是差动连接,当图中的圆柱产生 X位移时,电容量的变化量为 C=C1C2=2 2 Xln(Rr),式中2 、ln(Rr)为常数,说明 C与位移 X成正比,配上配套测量电路就能测量位移。图3-6 电
17、容式位移传感器结构三、实验器材主机箱、电容传感器、电容传感器实验模板、测微头。四、实验步骤图3-7 电容传感器位移实验原理图1、按图3-8将电容传感器装于电容传感器实验模板上,实验模板的输出o1接主机箱电压表的in。2、将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时传圈)。 3、将主机箱上的电压表量程(显示选择)开关打到档,合上主机箱电源开关;旋转测微头改变电容传感器的动极板位置使电压表显示,再转动测微头(向同一个方向)5圈,记录此时测微头读数和电压表显示值,此点为实验起点值;此后,反方向每转动测微头1圈即=.位移读取电压表读数,共转10圈读取相应的电压表读数(单行程位移方向做实验
18、可以消除测微头的回差);将数据填入表3-7并作出实验曲线。X(mm)9.789.288.788.287.787.286.786.285.785.28V(mv)-357-296-217-144-72-464131196262表3-7 电容传感器位移与输出电压值实验曲线如下4、根据表3-7数据计算电容传感器的系统灵敏度S和非线性误差,;,。五、思考题试设计利用的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?答:由于是测谷物的湿度的,当此传感器放在谷物里面时,根据谷物的呼吸作用,用传感器检测呼吸作用的水分程度,从而判断出谷物的湿度,当电容的S与D为恒定值时C=f(),稻谷的含
19、水率不同,介电常数也不同,可确定谷物含水率,传感器为两个板,谷物从传感器之间穿过。在设计过程中应考虑:感应器是否于谷物接触的充分、谷物是否均匀的从传感器之间穿过,而且要注意直板传感器的边缘效应。实验十一 压电式传感器振动测量实验一、 实验目的了解压电传感器的测量振动的原理和方法二、 基本原理压电式传感器由惯性质量块和受压的压电陶瓷片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在压电陶瓷片上,由于压电效应,压电陶瓷片上产生正比于运动加速度的表面电荷。三、 实验器材主机箱、差动变压器实验模板、振动源、示波器四、 实验步骤1、按照连线
20、图将压电传感器安装在振动台上,振动源的低频输入接主机箱的低频振荡器,其它连线按照图示接线。2、合上主机箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察低通滤波器输出波形。3、用示波器的两个通道同时观察低通滤波器输入和输出波形;在振动台正常振动时用手指敲击振动台,同时观察输出波形的变化。4、改变振动源的频率,观察输出波形的变化。低频振荡器的幅度旋钮固定至最大,调节频率,用频率表监测,用示波器读出峰峰值填入表格。五、 实验数据记录与分析频率以及相应的峰峰值:f(Hz)578.51215172025V(p-p)0.350.9912.0061.921.231.110.960.756与实验十
21、四电涡流实验振动测量实验比较,可以看出,压电式传感器电压峰峰值变化范围更大,因此压电式传感器的灵敏度更高,测量结果更精确。六、 思考题1、根据实验结果,可以知道振动台的自然频率大致是多少?传感器输出波形的相位差大致为多少?答:根据实验曲线可知,振动台的自然频率大约为8.5Hz。,所以。实验十二 电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。二、基本原理通过交变电流的线圈产生交变磁场,当金属体处在交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流。涡流的大小与金属导体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属体表
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 传感器 技术 实验 报告 金属 应变 电桥 性能