第二十六讲 含参数的一元二次方程的整数根问题.doc
《第二十六讲 含参数的一元二次方程的整数根问题.doc》由会员分享,可在线阅读,更多相关《第二十六讲 含参数的一元二次方程的整数根问题.doc(8页珍藏版)》请在沃文网上搜索。
1、第二十六讲 含参数的一元二次方程的整数根问题对于一元二次方程ax2bxc=0(a0)的实根情况,可以用判别式=b2-4ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质本讲结合例题来讲解一些主要的方法例1 m是什么整数时,方程(m2-1)x2-6(3m-1)x720有两个不相等的正整数根解法1 首先,m2-10,m1=36(m-3)20,所以m3用求根公式可得由于x1,x2是正整数,所以m-1=1,2,3,6,m+1=1,2,3,4,6,12,解得m=2这时x1=6,x2=4解法2
2、首先,m2-10,m1设两个不相等的正整数根为x1,x2,则由根与系数的关系知所以m2-1=2,3,4,6,8,9,12,18,24,36,72,即m23,4,5,7,9,10,13,19,25,37,73,只有m2=4,9,25才有可能,即m=2,3,5经检验,只有m=2时方程才有两个不同的正整数根说明 一般来说,可以先把方程的根求出来(如果比较容易求的话),然后利用整数的性质以及整除性理论,就比较容易求解问题,解法1就是这样做的有时候也可以利用韦达定理,得到两个整数,再利用整除性质求解,解法2就是如此,这些都是最自然的做法例2 已知关于x的方程a2x2-(3a2-8a)x2a2-13a15
3、=0(其中a是非负整数)至少有一个整数根,求a的值分析 “至少有一个整数根”应分两种情况:一是两个都是整数根,另一种是一个是整数根,一个不是整数根我们也可以像上题一样,把它的两个根解出来解 因为a0,所以所以所以只要a是3或5的约数即可,即a=1,3,5例3 设m是不为零的整数,关于x的二次方程mx2-(m-1)x10有有理根,求m的值解 一个整系数的一元二次方程有有理根,那么它的判别式一定是完全平方数令=(m-1)2-4mn2,其中n是非负整数,于是m2-6m+1=n2,所以 (m-3)2-n2=8,(m-3n)(m-3-n)8由于m-3nm-3-n,并且(m-3n)+(m-3-n)=2(m
4、-3)是偶数,所以m-3n与m-3-n同奇偶,所以说明 一个整系数的一元二次方程如果有整数根或有理根,那么它的判别式一定是完全平方数,然后利用平方数的性质、解不定方程等手段可以将问题解决例4 关于x的方程ax2+2(a-3)x+(a-2)=0至少有一个整数解,且a是整数,求a的值解 当a=0时,原方程变成-6x-2=0,无整数解当a0时,方程是一元二次方程,它至少有一个整数根,说明判别式4(a-3)2-4a(a-2)4(9-4a)为完全平方数,从而9-4a是完全平方数令9-4a=n2,则n是正奇数,要使x1为整数,而n为正奇数,只能n=1,从而a=2要使x2为整数,即n-34,n可取1,5,7
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
15 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二十六讲 含参数的一元二次方程的整数根问题 第二 十六 参数 一元 二次方程 整数 问题