机场选址问题数学建模优秀论文.doc
《机场选址问题数学建模优秀论文.doc》由会员分享,可在线阅读,更多相关《机场选址问题数学建模优秀论文.doc(23页珍藏版)》请在沃文网上搜索。
1、机场选址问题摘 要针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个城市是否建支线机场的以及第i个城市是否是以第j个支线机场为最近机场的。然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。 对于问题2, 该问题是属于多目标规划
2、的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。对于问题3, 我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际
3、应用。关键词:选址问题;多目标规划;LINGO;0-1变量法;加权1问题的重述近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。任务3,在任务一基础上,根据近一年每个城市的GDP情况,确定6个支线机场的所在城市,建立使得每
4、个支线机场的客流量尽量均衡的数学模型。2问题的分析21问题1题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的,一个是控制某个城市的最近机场是哪一个的。针对于上述两个0-1变量,我们分别设立了约束条件。同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO软件中,通过设立一约束条件,最后将目标函数进行最优化求解。22问题2该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利
5、用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。23问题3该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。基于上述两点,我们对GDP跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。通过LINGO编写程序,最中求得可行解。3模型的假设与符号说明3模型的假设
6、(1)各个城市的人口在某个较长的时间段内是不进行流动的,基本保持不变。(2)两城市之间的距离都按照直线来计算,不存在弯曲线段的情况。(3)各个城市都满足支线机场的建设条件,不存在某个城市不能建设支线机场的情况。(4)假设各个支线机场是建在各个城市里面的,也就是说,我们将在这30个城市里面选取6个城市建设支线机场。(5)各城市在未来一段时间内发展水平基本不变。3符号说明 符号符号说明若第j个城市建设支线机场,则第i个城市到第j个城市距离最近时,其余的各种情况,。第i个城市到第j个城市之间的距离,其中,。第i个城市的总人口,其中。第i个城市被选为建设支线机场时,;否则, 。按优先顺序k极小化的现实
7、目标或约束偏差变量的线性函数,其中。、正偏差变量,其中。、负偏差变量,其中。第i个城市的GDP,。问题一中求得的目标函数的最小值。30个城市总的GDP分配到六个支线机场的平均GDP。4模型的准备首先我们将30座城市在大地坐标(经纬度)下的位置用MATLAB软件画出以下图形(源程序见附录1):图1 大地坐标系下的各大城市的位置题目条件所给的数据是经纬度,显然是不能进行距离计算的,首先我们从网上查取了一个公式,用于计算地球上任意两点之间的距离。所以,我们就利用该公式计算出了任意两个城市之间的距离。公式如下: (1) (2)其中代表的是地球上两点的经度,、代表的是地球上两点的纬度,R代表的是地球的平
8、均半径,。最后求的任意两点之间的距离见附录2。5模型的建立与求解51问题1的模型建立与求解我们将每个城市到离该城市最近的那个支线机场的距离与该城市的总人数之积做为目标函数,求当该目标函数最小时,支线机场所建立的城市。所以该模型的目标函数可以写作如下: (3)定义作为0-1变量,所以应该满足: (4) (5)为了使建设机场的个数为6个,还需要满足以下条件: (6)为了是一座城市只能到一个机场的距离最短,还需要满足以下条件: (7)为了使满足地i个城市是否是以第j个城市中的机场的距离作为最短距离时,所以,还应满足以下条件: (8)所以可得出该模型的目标函数为:约束条件: 我们利用LINGO软件进行
9、编程(源程序见附录3,运算结果见附录4),得到如下结果: 表1 建设支线机场的城市城市编号城市说明1、5、7、11、20、23在这些城市里面建立支线机场可以使居民到支线机场的平均距离最短。也就是说,只有在以上表中的几个城市建设机场才能使得居民离最近支线机场的距离最小,即应把机场建设在城市1、5、7、11、20、23六处。以下是以某个支线机场作为最近的机场的城市表2 以某支线机场作为最近的机场的城市编号城市编号到该支线机场最近的城市编号11、10、1754、5、6、8、9、1972、3、7、121111、13、14、15、162018、20、21、22、24、25、26、27、28、29、302
10、323现在我们将利用MATLAB将各个城市以及支线机场所在的位置以图像的形式表现出来(源程序见附录5),图形如下:图2 各大城市以及支线机场的位置52问题2的模型建立与求解我们将各个正负偏差变量的之和作为目标函数,将求解该目标函数的最小值作为问题的目的,所以目标函数可以写成下面的形式: (9)定义作为变量,所以应该满足: (10) (11)为了使建设机场的个数为6个,还需要满足以下条件: (12)为了是一座城市只能到一个机场的距离最短,还需要满足以下条件: (13)为了使满足地i个城市是否是以第j个城市中的机场的距离作为最短距离时,所以,还应满足以下条件: (14)为了使覆盖的居民人数达到平衡
11、,所以有: (15)在上式中,1655是30个城市的总人口平均分配到6个支线机场的人数。为了使覆盖居民到支线机场的平均距离较小,还需要满足以下情况: (16)所以该模型的目标函数为:约束条件为: 我们利用LINGO软件进行编程(源程序见附录6,运算结果见附录7),得到如下结果:表3 建设支线机场的城市城市编号城市说明3、8、9、13、15、28在这些城市里面建立支线机场可以使居民到支线机场的平均距离最短。 以下是以某个支线机场作为最近的机场的城市表4 以某支线机场作为最近的机场的城市编号城市编号到该支线机场最近的城市编号33、7、12、2086、8、14、17、18、2192、4、5、9、10
12、、26131、13、29、301511、15、16、24、252819、22、23、27、28现在我们将利用MATLAB将各个城市以及支线机场所在的位置以图像的形式表现出来(源程序见附录8),图形如所示下:图3 各大城市以及支线机场的位置53问题3的模型建立与求解对于该问题,我们同样利用的是多元线性规划的问题。写出多了目标函数,将这些目标函数转换成为但目标函数,最后利用LINGO进行求解。其中我们的目标函数是将各个正负偏移量取得最小值时,选取的某些城市作为支线机场的建设城市,从而作为最优解。所以该问题的目标函数如下: (17)定义作为0-1变量,所以应该满足: (18) (19)为了使建设机场
13、的个数为6个,还需要满足以下条件: (20)为了使一座城市只能到一个支线机场的距离最短,还需要满足以下条件: (21)为了使满足地i个城市是否是以第j个城市中的机场的距离作为最短距离时,所以,还应满足以下条件: (22)为了使覆盖的居民人数达到平衡,所以有: (23)在上式中,1655是30个城市的总人口平均分配到6个支线机场的人数。为了使覆盖居民到支线机场的平均距离较小,还需要满足以下情况: (24)为了使各个机场的客运量达到均衡,我们不禁用其覆盖的军民人数来表示,而且还用该支线机场所覆盖的城市的GDP之和均衡来表示各个支线机场的客流量均衡,所以约束条件见下式: (25)所以该模型的目标函数
14、见下式:约束条件为:我们利用LINGO软件进行编程(源程序见附录9,运算结果见附录10),得到如下结果:表5 建设支线机场的城市城市编号城市说明3、5、8、9、13、15在这些城市里面建立支线机场可以使居民到支线机场的平均距离最短。以下是以某个支线机场作为最近的机场的城市表6 以某支线机场作为最近的机场的城市编号城市编号到该支线机场最近的城市编号31、3、2052、5、7、2386、8、17、22、24、25、2894、9、12、14、181310、11、13、191515、16、21、26、27、29、30现在我们将利用MATLAB将各个城市以及支线机场所在的位置以图像的形式表现出来(源程序
15、见附录11),图形如下:图4 各大城市以及支线机场的位置6模型的推广与改进方向61模型的改进我们在建立模型的时候假设任意两城市之间的距离是直线的,也就是按照最短距离来算的,可是实际上并不是这样的。如果能知道两城市之间的真实距离,这样算出来的结果应该会更加准确些。62模型的推广本模型不仅适用于此题目中飞机场的选址,而且可应用于实际生活中多种优化问题,能够很好地解决实际问题,给出优化方案起到了减少资源能源的投入,提高了收益的作用。比如移动、联通信号塔选址覆盖问题(尽可能少的信号塔覆盖全部地区并满足客户需求),网通铁通线路布局(减少了电缆线路),银行选址,派出所驻地(及时的处理问题、服务人民),物流
16、公司配货站点设置(快速高效的配送货物),相邻几个村庄建设学校选址等问题。7模型的优缺点71模型的优点(1)该模型比较简单,运用了0-1变量和多目标线性规划,整体来说就是属于一个最优化的问题。我们建立的模型,能够运用较简单的程序就能将结果解答出来,简捷、方便、易懂。(2)该模型适应性广,可适用于许多问题的选址问题。72模型的缺点(1)我们假设各个城市都能建设支线机场,忽略了不能建设机场的情况。(2)模型所给的最优解只单纯性的给出了所在城市,而城市所在地区幅员辽阔,所以答案略显得笼统。参考文献1 J.A.邦迪图论及其应用M.北京:科学出版社,19842 韩中庚长江水质综合评价与预测的数学模型J工程
17、数学学报,20053 张宏伟kng08.0及其在环境系统优化中的应用M天津:天津大学出版社,20054 袁新生LINGO和EXCEL在数学建模中的作用M北京:科学出版社,20075 韩中庚数学建模方法及其应用(第二版)M北京:高等教育出版社,2009附 录附录1:画各城市在经纬度坐标系下的位置图程序(MATLAB) x=data3(1:30,2); y=data3(1:30,3); cftool hold on legend(城市)附录2:任意两座城市之间的距离表表7 任意两座城市之间的距离10146.2087527.2021319.5801330.579265.5566290.1473214
18、6.20870452.8953399.5192451.0169406.705144.03573527.2021452.89530461.9687604.6329662.4375425.90954319.5801399.5192461.96879.49E-05147.0755245.1018512.16365330.579451.0169604.6329147.07559.49E-05132.061583.98076265.5566406.705662.4375245.1018132.0610549.3757290.1473144.0357425.9095512.1636583.9807549.
19、37508322.1059434.9494570.4819112.042735.03323153.9619564.36429382.0044467.9079504.59668.94566140.9123263.8845580.995210106.027121.2429421.2866278.3842336.6706312.6631247.318211230.7495313.8892750.9839512.1978464.44345.7461426.168412301.3644222.7853638.7191609.0307631.6312552.4608218.431613431.511654
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机场 选址 问题 数学 建模 优秀论文