高中化学奥林匹克竞赛辅导讲座第7讲-化学反应速率与化学平衡.doc
《高中化学奥林匹克竞赛辅导讲座第7讲-化学反应速率与化学平衡.doc》由会员分享,可在线阅读,更多相关《高中化学奥林匹克竞赛辅导讲座第7讲-化学反应速率与化学平衡.doc(32页珍藏版)》请在沃文网上搜索。
1、 第7讲 化学反应速率与化学平衡【竞赛要求】反应速率基本概念。反应级数。用实验数据推求反应级数。一级反应积分式及有关计算(速率常数、半衰期、碳-14法推断年代等等)。阿累尼乌斯方程及计算(活化能的概念与计算;速率常数的计算;温度对速率常数影响的计算等)。活化能与反应热的关系。反应机理一般概念。推求速率方程。催化剂对反应影响的本质。标准自由能与标准平衡常数。平衡常数与温度的关系。平衡常数与转化率。利用平衡常数的计算。热力学分解温度(标态与非标态)。克拉贝龙方程及其应用(不要求微积分)。【知识梳理】一、化学平衡(一)化学平衡的条件 根据吉布斯自由能判据,在等温等压、Wf = 0的条件下,GT,P
2、0,则化学反应自发地由反应物变成产物,这时反应物的浓度(分压)逐渐减少,产物的浓度(分压)逐渐增加,反应物和产物布斯自由能之差逐渐趋于零,直到GT,P = 0时达到化学平衡。这时从宏观上看反应似乎停止了,其实从微观上正反应和逆反应仍在继续进行,只不过两者的反应速率正好相等而已,所以化学平衡是一个动态平衡。即:等温等压,Wf = 0的条件下:GT,P 0 正反应自发进行; GT,P = 0 达化学平衡化学平衡的条件;GT,P 0 正反应不自发(逆反应自发)。 化学反应达平衡时:从热力学角度:等温等压,Wf = 0:应GT,P = 0从动力学角度:r+ = r反应物和生成物的浓度不变,即存在一个平
3、衡常数。(二)实验平衡常数大量实验事实证明,在一定条件下进行的可逆反应,其反应物和产物的平衡浓度(处于平衡状态时物质的浓度)间存在某种定量关系。例如反应:N2O4(g) 2NO2(g)若将一定量的N2O4或(和)NO2置于1L的密闭烧瓶内,然后将烧瓶置于373K的恒温槽内,让其充分反应,达到平衡后,取样分析N2O4的平衡浓度,再求算出NO2的平衡浓度。三次实验的数据列于表-2。表-2 N2O4NO2体系的平衡浓度(373K)实验序号起始浓度/moldm3浓度变化/moldm3平衡浓度/moldm3N2O4NO20.1000.000 0.060+ 0.1200.0400.1200.36N2O4N
4、O20.0000.100+ 0.014 0.0280.0140.0720.37N2O4NO20.1000.100 0.030+ 0.0600.0700.1600.36由表-2数据可见,恒温条件下,尽管起始状态不同,浓度的变化(即转化率)不同,平衡浓度也不同,但产物NO2的平衡浓度的平方值NO22与反应物N2O4的平衡浓度N2O4的比值却是相同的,可用下式表示: =式中称为该反应在373K时的平衡常数。这个常数是由实验直接测定的,因此常称之为实验平衡常数或经验平衡常数。上述关系对一切可逆反应都适用。若可逆反应用下述通式表达:a A + b B d D + e E在一定温度下达到平衡时,则有: =
5、 (7-19)即在一定温度下,可逆反应达到平衡时,产物的浓度以反应方程式中计量数为指数的幂的乘积与反应物浓度以反应方程式中计量数为指数的幂的乘积之比是一个常数。书写平衡常数关系式必须注意以下几点:(1)对于气相反应,平衡常数除可用如上所述的各物质平衡浓度表示外,也可用平衡时各物质的分压表示如:a A (g)+ b B(g) d D(g) + e E(g) = (7-20)式中实验平衡常数以表示,以与前述相区别。称为压力常数,称为浓度平衡常数。同一反应的与有固定关系。若将各气体视为理想气体,那么 = ART = BRT = DRT = ERT代入(7-20)式,有 = (RT) = (RT) (
6、7-21)(2)不要把反应体系中纯固体、纯液体以及稀水溶液中的水的浓度写进平衡常数表达式。例如:CaCO3(s) CaO(s) + CO2(g) K = pCr2O(aq) + H2O(I) 2CrO(aq) + 2H+(aq) K = CrO2H+/ Cr2O但非水溶液中反应,若有水参加或生成,则此时水的浓度不可视为常数,应写进平衡常数表达式中。例如:C2H5OH + CH3COOH CH3COOC2H5 + H2O = (3)同一化学反应,化学反应方程式写法不同,其平衡常数表达式及数值亦不同。例如:N2O4(g) 2NO2(g) K(373) = = 0.36N2O4(g) 2NO2(g)
7、 K = = = 0.602NO2(g) N2O4(g) K = = 2.8因此书写平衡常数表达式及数值,要与化学反应方程式相对应,否则意义就不明确。平衡常数是表明化学反应进行的最大程度(即反应限度)的特征值。平衡常数愈大,表示反应进行愈完全。虽然转化率也能表示反应进行的限度,但转化率不仅与温度条件有关,而且与起始条件有关。如表7-2,实验序号N2O4的转化率为0%;实验序号N2O4转化率为30%。若有几种反应物的化学反应,对不同反应物,其转化率也可能不同。而平衡常数则能表示一定温度下各种起始条件下,反应进行的限度。(三)标准平衡常数和等温方程式1、标准平衡常数:等温等压下,对理想气体反应:
8、f h H设、分别为D、E、F、H的平衡分压,则有: = (7-22)式中称理想气体的热力学平衡常数标准平衡常数。热力学可以证明,气相反应达平衡时,标准吉布斯自由能增量(反应物和生成物p都等于p时,进行一个单位化学反应时的吉布斯自由能增量)与应有如下关系:= (7-23)(7-23)式说明,对于给定反应,与和T有关。当温度指定时,只与标准态有关,与其他浓度或分压条件无关,它是一个定值。因此,定温下必定是定值。即仅是温度的函数。2、化学反应的等温方程式如果化学反应尚未达到平衡,体系将发生化学变化,反应自发地往哪个方向进行呢?由化学等温方程式即可判断。 等温等压下,理想气体反应: f h H气体的
9、任意分压为、 时: ; ; 此时若反应自左至右进行了一个单位的化学反应(无限大量的体系中),则r Gm =r Gm + 令 则 r Gm =r G+ = + (7-24) (7-24)式称作化学反应的等温方程式。式中称作压力商。若 ,则r Gm 0,反应正向自发进行;若 =,则r Gm = 0,体系已处于平衡状态;若 ,则r Gm 0,反应正向不能自发进行(逆向自发)。 注:1、对溶液中进行的反应:r Gm =r G+= + (7-25)= ; =c 平衡浓度;任意浓度;热力学平衡常数(标准平衡常数)。浓度商。称作标准浓度。即在标准状态下,c = 1mol.dm-3。2、纯固体或纯液体与气体间
10、的反应(复相反应)例如,下列反应: 是一个多相反应,其中包含两个不同的纯固体和一个纯气体。化学平衡条件,适用于任何化学平衡,不是论是均相的,还是多相的。又因为 所以 , =式中是平衡反应体系中CO2气体的压力,即CO2的平衡分压。这就是说,在一定温度下,CaCO3(s)上面的CO2的平衡压力是恒定的,这个压力又称为CaCO3(s)的“分解压”。注意:纯固体的“分解压”并不时刻都等于,例如反应:, 而“分解压”若分解气体产物不止一种,分解平衡时气体产物的总压称作“分解压”。例如:,由纯分解平衡时,称作的“分解压”。 结论:对纯固体或纯液体与气体间的多相反应 (7-26)(四)平衡常数的测定和平衡
11、转化率的计算1、平衡常数的测定:测定平衡常数实际上是测定平衡体系中各物质的浓度(确切地说是活度)或压力。视具体情况可以采用物理或化学的方法。(1)物理方法:测定与浓度有关的物理量。如压力、体积、折射率、电导率等。优点:不会扰乱体系的平衡状态。缺点:必须首先确定物理量与浓度的依赖关系。(2)化学方法:利用化学分析的方法直接测定平衡体系中各物质的浓度。缺点:加入试剂往往会扰乱平衡,所以分析前首先必须使平衡“冻结”。通常采取的方式是:骤然冷却,取出催化剂或加入阻化剂等。2、平衡转化率的计算:(1)平衡转化率(亦称理论转化率或最高转化率)平衡转化率 平衡转化率是以原料的消耗来衡量反应的限度注意:实际转
12、化率平衡转化率(工厂通常说的转化率为实际转化率)(2)平衡产率(最大产率) 以产品来衡量反应的限度平衡产率(产率通常用在多方向的反应中,即有副反应的反应)有副反应时,产率 转化率(五)外界因素对化学平衡的影响1、浓度对平衡的影响对于一个已达平衡的化学反应,若增加反应物浓度,会使Q(或)的数值因其分母增大而减小,而(或)却不随浓度改变而发生变化,于是Q,使原平衡破坏,反应正向进行。随着反应的进行,生成物浓度增大,反应物浓减小,Q值增大,直到Q增大到与再次相等,达到新的平衡为止。对于改变浓度的其他情况,亦可作类似分析。结论概括如下:在其他条件不变的情况下,增加反应物浓度或减少生成物浓度,平衡向正反
13、应方向移动;增加生成物浓度或减少反应物浓度,平衡向着逆反应方向移动。2、压力对平衡的影响体系(总)压力的变化对没有气体参加或生成的反应影响很小。对于有气体参见且反应前后气体物质计量数有变化的反应,压力变化对平衡有影响。例如合成氨反应N2(g) + 3H2(g) 2NH3(g)在某温度下达到平衡时有: = 如果将体系的容积减少一半,使体系的总压力增加至 原来的2倍,这时各组分的分压分别为原来的2倍,反应商为: = = 即 原平衡破坏,反应正向进行。随着反应进行,、不断下降,不断增大,使值增大,直到再次与K相等,达到新的平衡为止。可见,增大体系总压力平衡向着批体计量数减小的方向移动。类似分析,可得
14、如下结论:在等温下,增大总压力,平衡向气体计量数减小的方向移动;减小总压力,平衡向气体计量数增加的方向移动。如果反应前后气体计量数相等,则压力的变化不会使平衡发生移动。3、温度对平衡的影响温度的改变对于反应商没有影响,却可以改变平衡常数。由= 和 = T 得= T= (7-27)此式说明了平衡常数与温度的关系,称为范特荷甫方程式。设T1时,标准平衡常数为,T2时,标准平衡常数为,且T2T1,有= = 当温度变化范围不大时,视和不随温度而改变。上两式相减,有= (7-28)根据(7-28)式可以说明温度对平衡的影响。设某反应在温度T1时达到平衡,有Q = 。当升温至 T2时:若该反应为吸热反应,
15、0,由(7-28)式得知,则Q,所以平衡沿正反应方向移动;若该反应为放热反应,0,由(7-28)式得知,则Q ,所以平衡沿逆反应方向移动。总之,升温使平衡向吸热方向移动。反之,降温使平衡向放热方向移动。各种外界条件对化学平衡的影响,均符合里查德里概括的一条普遍规律:如果对平衡体系施加外力,平衡将沿着减少此外力影响的方向移动。这就是里查德里原理。【典型例题】例1、把6 mol A气和5 mol B气混合后放入4 L密闭容器中,在一定条件下发生反应:3 A(g) + B(g) 2C(g) + x D(g),经5 min生成C为2 mol,测定D的平均速率为0.1 molL-1min-1。求:(1)
16、A的平均反应速率;(2)此时A的浓度;(3)温度不变,体积不变,容器内压强与开始时压强比值;(4)B的转化率。分析:不同物质表示同一反应的反应速率,其比值等于方程式中各物质的化学计量数之比。同温、同体积时,气体的压强之比等于气体的物质的量之比。转化率则为转化的量与起始量之比值。解:经5 min生成D的物质的量:n(D) = 0.1 molL-1min-14 L 5min = 2 mol, 3 A(g) + B(g) 2C(g) + x D(g)起始物质的量/mol 6 5 0 0转化物质的量/mol 3 1 2 25 min后物质的量/mol 3 4 2 2(1)(A) = = 0.15 mo
17、lL-1min-1(2)C(A) = = 0.75molL-1(3)容器内压强p1与开始压强p0之比为: = = (4)B的转化率 = = 20%例2、N2O5分解反应的实验数据如下:时间/min01234浓度/molL-10.1600.1130.0800.0560.040(1)计算1 min到3 min的平均速率;(2)用浓度对时间作图,求2 min时的瞬时速率。分析:平均速率根据1 min到3 min的浓度的变化值即可求得。2 min时的瞬时速率要用浓度对时间作图得c t曲线,在曲线上2 min时的这一点作切线,其斜率之负值即为此时的瞬时速率。解:(1)( N2O5) = = 0.029
18、molL-1min-10 1 2 3 40.1600.1200.0800.040斜率= -0.028N2O5浓度/mol/Lx=2.0Y=0.056时间/min浓度随时间的变化关系图(2)用浓度对时间作图得c t曲线,如图所示:反应进行2分钟时,曲线的斜率等于0.028 molL-1min-1。因此,这时的反应速率为:(N2O5) = (0.028 molL-1min-1)= 0.028molL-1min-1。例3、制备光气的反应按下式进行:CO + Cl2 = COCl2实验测得下列数据:实验顺序初浓度/molL-1初速率/molL-1s-1COCl210.1000.1001.210-220
19、.1000.0504.2610-330.0500.106.010-340.0500.0502.1310-3求该反应的速率常数、反应级数和速率方程。分析:设速率方程为= kc m (CO)c n (Cl2)。m、n的求算可分别保持Cl2、CO的浓度不变,再根据Cl2、CO的对应浓度和速率而求得。求得m、n后代入具体数据即可得k,速率方程的具体表达式也就确定了。解:(1)求反应级数反应速率方程为= kc m (CO)c n (Cl2)。首先用实验1、2的数据,即保持CO浓度不变,而使Cl2的浓度由0.100 molL-1变为0.050 molL-1,相应的初速率由1.210-2 molL-1s-1
20、变为4.2610-3 molL-1s-1。根据速率方程:1 = kc m (CO)c (Cl2)2 = kc m (CO)c (Cl2)=两边取对数并移项:n = 代入实验数据:n = = = 1.5同理可求出:m = = = 1故该反应对CO为一级反应,对Cl2为3/2级反应,总反应级数为2.5级。(2)求速率常数k = = = 3.8(Lmol-1)3/2s-1求速率方程该反应速率方程式为= kC(CO)C3/2(Cl2)例4、338 K时N2O5气相分解的速率常数为0.29 min-1,活化能为103.3 kJmol1,求353 K时的速率常数k及半衰期t1/2。分析:由阿累尼乌斯公式l
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中化学 奥林匹克 竞赛 辅导 讲座 化学反应 速率 化学平衡