人教B版高中数学选择性必修第一册第一章空间向量与立体几何_学案讲义(知识点考点汇总及配套习题).doc
《人教B版高中数学选择性必修第一册第一章空间向量与立体几何_学案讲义(知识点考点汇总及配套习题).doc》由会员分享,可在线阅读,更多相关《人教B版高中数学选择性必修第一册第一章空间向量与立体几何_学案讲义(知识点考点汇总及配套习题).doc(105页珍藏版)》请在沃文网上搜索。
1、第一章 空间向量与立体几何1.1空间向量及其运算11.1.1空间向量及其运算11.1.2空间向量基本定理141.1.3空间向量的坐标与空间直角坐标系261.2空间向量在立体几何中的应用391.2.1空间中的点、直线与空间向量391.2.2空间中的平面与空间向量511.2.3直线与平面的夹角621.2.4二面角751.2.5空间中的距离891.1空间向量及其运算1.1.1空间向量及其运算学 习 目 标核 心 素 养1了解空间向量、向量的模、零向量、相反向量、相等向量、共面向量等概念(重点)2会用平行四边形法则、三角形法则作出向量的和与差,掌握数乘向量运算的意义及运算律(重点、易混点)3掌握两个向
2、量数量积的概念、性质及运算律(重点、易错点)1通过空间向量有关概念的学习,培养数学抽象素养2借助于空间向量的线性运算,提升数学运算素养3借助于空间向量的数量积,提升数学运算及逻辑推理的数学素养国庆节期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那实际发生的位移是什么?又如何表示呢?图1图21空间向量(1)定义:空间中既有大小又有方向的量称为空间向量(2)模(或长度):向量的大小(3)表示方法:几何表示法:可以用有向线段来
3、直观的表示向量,如始点为A终点为B的向量,记为,模为|字母表示法:可以用字母a,b,c,表示,模为|a|,|b|,|c|,2几类特殊的向量(1)零向量:始点和终点相同的向量称为零向量,记作0(2)单位向量:模等于1的向量称为单位向量(3)相等向量:大小相等、方向相同的向量称为相等向量(4)相反向量:方向相反,大小相等的向量称为相反向量(5)平行向量:方向相同或者相反的两个非零向量互相平行,此时表示这两个非零向量的有向线段所在的直线平行或重合通常规定零向量与任意向量平行(6)共面向量:一般地,空间中的多个向量,如果表示它们的有向线段通过平移后,都能在同一平面内,则称这些向量共面思考:空间中任意两
4、个向量共面吗?空间中任意三个向量呢?提示空间中任意两个向量都是共面的,但空间中任意三个向量不一定共面3空间向量的线性运算类似于平面向量,可以定义空间向量的加法、减法及数乘运算图1图2(1)如图1,ab,ab(2)如图2,即三个不共面向量的和,等于以这三个向量为邻边的平行六面体中,与这三个向量有共同始点的对角线所表示的向量(3)给定一个实数与任意一个空间向量a,则实数与空间向量a相乘的运算称为数乘向量,记作a其中:当0且a0时,a的模为|a|,而且a的方向:()当0时,与a的方向相同;()当0时,与a的方向相反当0或a0时,a0(4)空间向量的线性运算满足如下运算律:对于实数与,向量a与b,有a
5、a()a;(ab)ab4空间向量的数量积(1)空间向量的夹角如果a,b,那么向量a,b互相垂直,记作ab(2)空间向量数量积的定义:已知两个非零向量a,b,则|a|b|cosa,b叫做a,b的数量积(或内积),记作ab(3)数量积的几何意义向量的投影如图所示, 过向量a的始点和终点分别向b所在的直线作垂线,即可得到向量a在向量b上的投影a.数量积的几何意义: a与b的数量积等于a在b上的投影a的数量与b的长度的乘积,特别地,a与单位向量e的数量积等于a在e上的投影a的数量规定零向量与任意向量的数量积为0.(4)空间向量数量积的性质:abab0;aa|a|2a2;|ab|a|b|;(a)b(ab
6、);abba(交换律);(ab)cacbc(分配律)1思考辨析(正确的打“”,错误的打“”)(1)同平面向量一样,任意两个空间向量都不能比较大小()(2)两个相反向量的和为零向量()(3)只有零向量的模等于0()(4)空间中任意两个单位向量必相等()答案(1)(2)(3)(4)提示大小相等,而且方向相同的向量才是相等向量;大小相等,方向相反的两个向量称为相反向量;任意两个单位向量的大小相等,但方向不一定相同,故不一定相等2下列命题中正确的是()A(ab)2a2b2B|ab|a|b|C(ab)ca(bc)D若a(bc),则abac0B对于A项,左边|a|2|b|2cos2a,b,右边|a|2|b
7、|2,左边右边,故A错误对于C项,数量积不满足结合律,C错误在D中,a(bc)0,abac0,abac,但ab与ac不一定等于零,故D错误对于B项,ab|a|b|cosa,b,1cosa,b1,|ab|a|b|,故B正确3(教材P11练习A改编)化简:(1)(a2b3c)5_;(2)()()_(1)abc(2)0(1)原式abcabcabc(2)原式04如图所示,在正方体ABCDA1B1C1D1中,则(1),_;(2),_;(3),_(1)45(2)135(3)90(1)因为,所以,又CAB45,所以,45(2),180,135(3),90合作探究类型一空间向量的概念及简单应用【例1】(1)下
8、列说法中正确的是 ()A若|a|b|,则a,b的长度相同,方向相同或相反B若向量a是向量b的相反向量,则|a|b|C空间向量的减法满足结合律D在四边形ABCD中,一定有B|a|b|,说明a与b模长相等,但方向不确定对于a的相反向量ba,故|a|b|,从而B正确只定义加法具有结合律,减法不具有结合律;一般的四边形不具有,只有平行四边形才能成立故A、C、D均不正确(2)如图所示,以长方体ABCDA1B1C1D1的八个顶点的两点为始点和终点的向量中:试写出与是相等向量的所有向量;试写出的相反向量;若ABAD2,AA11,求向量的模解与向量是相等向量的(除它自身之外)有,及,共3个向量的相反向量为,|
9、31两个向量的模相等,则它们的长度相等,但方向不确定,即两个向量(非零向量)的模相等是两个向量相等的必要不充分条件2熟练掌握空间向量的有关概念、向量的加减法的运算法则及向量加法的运算律是解决好这类问题的关键1给出以下结论:两个空间向量相等,则它们的始点和终点分别相同;在正方体ABCDA1B1C1D1中,必有;若空间向量m,n,p满足mn,np,则mp其中不正确的个数是()A0B1C2 D3B两个空间向量相等,它们的始点、终点不一定相同,故不正确;在正方体ABCDA1B1C1D1中,必有成立,故正确;显然正确故选B2在平行六面体ABCDA1B1C1D1中,下列四对向量:与;与;与;与其中互为相反
10、向量的有n对,则n等于()A1 B2C3 D4B对于与,与长度相等,方向相反,互为相反向量;对于与长度相等,方向不相反;对于与长度相等,方向相同故互为相反向量的有2对类型二空间向量的线性运算【例2】(1)如图所示,在三棱柱ABCA1B1C1中,N是A1B的中点,若a,b,c,则()A(abc) B(abc)Cabc Da(bc)(2)如图,已知长方体ABCDABCD,化简下列向量表达式,并在图中标出化简结果的向量;(1)B若AB中点为D,(abc),故选B(2)解()向量、如图所示:1首尾顺次相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,即An1An2首尾顺次相接的若干向量
11、若构成一个封闭图形,则它们的和为0如图,03如图所示,在平行六面体ABCDA1B1C1D1中,设a,b,c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:(1);(2);(3)解(1)P是C1D1的中点,aacacb(2)N是BC的中点,abababc(3)M是AA1的中点,aabc又ca,abc类型三数量积的运算及应用探究问题1空间两个向量夹角定义的要点是什么?提示(1)任意两个空间向量都是共面的,故空间向量夹角的定义与平面向量夹角的定义一样(2)作空间两个向量夹角时要把两个向量的起点放在一起(3)两个空间向量的夹角是唯一的,且a,bb,a2联想空间向量数量积的
12、定义,如何求两个向量a,b的夹角?如何求|ab|?提示借助cosa,b,求向量a,b的夹角借助|ab|求模【例3】如图所示,已知正四面体OABC的棱长为1,点E,F分别是OA,OC的中点求下列向量的数量积:(1);(2);(3)()()思路探究根据数量积的定义进行计算,求出每组向量中每个向量的模以及两向量的夹角,注意充分结合正四面体的特征解(1)正四面体的棱长为1,则|1OAB为等边三角形,AOB60,于是:|cos,|cosAOB11cos 60(2)由于E,F分别是OA,OC的中点,所以EFAC,于是|cos,|cos,11cos,11cos 120(3)()()()()()(2)2222
13、121211(变条件,变结论)若H为BC的中点,其他条件不变,求EH的长解由题意知(),(),|2(22222),又|1且,60,60,60,|2,即|,所以EH的长为2(变结论)求异面直线OH与BE所成角的余弦值解在AOB及BOC中,易知BEOH,又,(),2cos,又异面直线所成角的范围为,故异面直线OH与BE所成角的余弦值为1在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式;(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积;(3)根据向量的方向,正确求出向量的夹角及向量的模;(4)代入公式ab|a|b|cosa,b求解2非零向量a
14、与b共线的条件是ab|a|b|提醒:在求两个向量夹角时,要注意向量的方向如本例中,120,易错写成60,为避免出错,应结合图形进行计算课堂总结一、知识必备1空间向量的基本概念,特别注意单位向量和零向量单位向量的长度为1,方向任意零向量的方向是任意的,与任意向量平行,零向量与任意向量的数量积为02向量的线性运算包括向量的加法、减法与数乘运算加减法运算遵循平行四边形法则和三角形法则,向量的数量积运算要注意两个向量的夹角二、方法必备1数形结合法:求两向量夹角时,一定要结合图形确定角的位置2转化法:在求异面直线所成的角时要转化为两个向量的夹角,结合异面直线所成角的范围确定1在正方体ABCDA1B1C1
15、D1中,下列各对向量夹角为45的是()A与B与C与 D与AA、B、C、D四个选项中两个向量的夹角依次是45,135,90,180,故选A2在棱长为2的正四面体ABCD中,若E、F分别是BC、AD的中点,则等于()A0B C1D1D()()(22)13化简:2233_022332()00004已知|a|13,|b|19,|ab|24,则|ab|_22|ab|2a22abb21322ab192242,2ab46,|ab|2a22abb253046484|ab|221.1.2空间向量基本定理学 习 目 标核 心 素 养1理解空间向量基本定理(重点)2运用空间向量基本定理解决一些几何问题(难点)3理解
16、基底、基向量及向量的线性组合的概念(重点)1通过基底、基向量及向量的线性组合空间向量基本定理的学习,培养数学抽象素养2借助任一空间向量可用一组基向量线性表示,提升数学运算素养图中的向量,是不共面的三个向量,请问向量与它们是什么关系?由此可以得出什么结论?1共面向量定理如果两个向量a,b不共线,则向量a,b,c共面的充要条件是存在唯一的实数对(x,y),使cxayb思考1:平面向量基本定理中对于向量a与b有什么条件,在空间中能成立吗?提示平面向量基本定理中要求向量a与b不共线,在空间中仍然成立2空间向量基本定理如果空间中的三个向量a,b,c不共面,那么对空间中的任意一个向量p,存在唯一的有序实数
17、组(x,y,z),使得pxaybzc特别地,当a,b,c不共面时,可知xaybzc0时,xyz03相关概念(1)线性组合:表达式xaybzc一般称为向量a,b,c的线性组合或线性表达式(2)基底:空间中不共面的三个向量a,b,c组成的集合a,b,c,常称为空间向量的一组基底(3)基向量:基底a,b,c中a,b,c都称为基向量(4)分解式:如果pxaybzc,则称xaybzc为p在基底a,b,c下的分解式思考2:平面向量的基底要求二个基向量不共线,那么构成空间向量基底的三个向量有什么条件?提示空间任意三个不共面的向量都可以作为空间向量的一个基底,基底选定后,空间任意向量均可由基底唯一表示思考3:
18、基向量和基底一样吗?0能否作为基向量?提示基底是指一个向量组,基向量是基底中的某一个向量,因为0与其他任意两个非零向量共面,所以0不能作为基向量4拓展:设O,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组x,y,z,使xyz,当且仅当xyz1时,P,A,B,C四点共面1思考辨析(正确的打“”,错误的打“”)(1)若a,b,c为空间一个基底,则a,b,2c也可构成空间一个基底()(2)若三个非零向量a,b,c不能构成空间的一个基底,则a,b,c共面()(3)若a,b是两个不共线的向量,且cab(,R且0),则a,b,c构成空间的一个基底()答案(1)(2)(3)提示(1)a,
19、b,c为空间一个基底,则a,b,c不共面,a、b、2c也不共面,故a,b,2c也构成空间一个基底(2)由共面定理知(2)正确(3)由cab知a,b,c共面,不能构成基底2(教材P16练习A改编)对于空间的任意三个向量a,b,2a3b,它们一定是()A共面向量B共线向量C不共面向量 D既不共线也不共面的向量A根据共面向量定理知a,b,2a3b一定共面3在长方体ABCDA1B1C1D1中,可以作为空间向量一个基底的是()A, B,C, D,C由题意知,不共面,可以作为空间向量的一个基底合作探究类型一向量共线问题【例1】如图所示,在正方体ABCDA1B1C1D1中,E在A1D1上,且2,F在对角线A
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 选择性 必修 一册 第一章 空间 向量 立体几何 讲义 知识点 考点 汇总 配套 习题