配电变压器油温在线监测仪设计.doc
《配电变压器油温在线监测仪设计.doc》由会员分享,可在线阅读,更多相关《配电变压器油温在线监测仪设计.doc(24页珍藏版)》请在沃文网上搜索。
1、单片机原理及接口技术 课程设计(论文)题目: 配电变压器油温在线监测仪设计 院(系): 专业班级: 学 号: 学生姓名: 指导教师: (签字)起止时间: 课程设计(论文)任务及评语院(系):电气工程学院 教研室: 学 号学生姓名专业班级课程设计(论文)题目配电变压器油温在线监测仪设计课程设计(论文)任务该检测仪实时监测变压器的油温,温度检测范围1085,精度0.5带有四组开关,分别用于变压器冷却系统的控制,超温报警,超温跳闸等。设计内容:硬件电路设计:1. CPU最小系统设计(包括CPU选择,存储器,晶振电路,复位电路)2. 4组开关电路设计以及油温检测电路设计3. 声光报警电路设计4. 软件
2、设计(程序流程图设计和程序编写进度计划第1天 查阅收集资料第2天 总体设计方案的确定第3-4天 CPU最小系统设计第5天 4组开关电路设计以及油温检测电路设计第6天声光报警电路设计第7天 程序流程图设计第8天 软件编写与调试第9天 设计说明书完成第10天 答辩指导教师评语及成绩 平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘 要变压器油温是影响油浸式变压器安全稳定运行的一项重要因素。变压器油温受变压器所带负荷以及环境温度等因素的影响。环境温度是随机变化的,变压器所带负荷也是变化的,因而变压器运行时油温是一个变化的
3、量。因此,必须通过适时控制变压器的冷却设备启动或停止,以保证变压器正常运行对油温的要求。油浸式变压器常见的冷却方式是变压器内部油循环和外部风扇直吹,其中内部油循环难以控制。本装置采取控制风机的启动和停止来控制变压器的油温保持在规定范围内。目前,大多数变压器风机启停是采用温度继电器控制。这种方法的局限是只有一个温度定值,启动或停止风机是以温度高于或低于这一定值来决定,当变压器油温在温度定值附近波动时,会出现风机频繁启停,严重时有可能造成风机烧毁,因此需要一种能够实现智能控制的装置,解决以上问题。本装置采用设置温度上、下限的方法避免上述情况,并且在确定风机的启动温度时,采用实时比较的方法,以保证风
4、机启动后油温可能达到的最高值不会超过规程规定的上限。关键词:变压器,继电器,油温,启动温度目 录第1章 绪论11.1 配电变压器油温在线监测仪设计概况11.2 本文研究内容1第2章 CPU最小系统设计22.1 配电变压器油温在线监测仪设计总体设计方案22.2 CPU的选择22.3 数据存储器扩展42.4 复位电路设计52.5 时钟电路设计62.6 CPU最小系统图7第3章 输入输出接口电路设计83.1 配电变压器油温在线监测仪设计传感器的选择83.2 配电变压器油温在线监测仪设计检测接口电路设计83.3 声光报警电路设计93.4 人机对话接口电路设计10第4章 配电变压器油温在线监测仪软件设计
5、114.1 流程图设计114.2 配电变压器油温在线监测仪设计流程图设计124.3 程序清单12第5章 系统设计与分析175.1 系统原理图175.2 系统原理综述17第6章 课程设计总结18参考文献19II第1章 绪论1.1 配电变压器油温在线监测仪设计概况在工业生产和日常生活中,对温度控制系统的要求,主要是保证温度在一定温度范围内变化,稳定性好,不振荡,对系统的快速性要求不高。以下简单分析了单片机温度控制系统设计过程及实现方法。现场温度经温度传感器采样后变换为模拟电压信号,经低通滤波滤掉干扰信号后送放大器,信号放大后送模/数转换器转换为数字信号送单片机,单片机根据输入的温度控制范围通过继电
6、器控制加热设备完成温度的控制。本系统的测温范围为1085,启动单片机温度控制系统后首先按下第一个按键开始最低温度的设置,这时数码管显示温度数值,每隔一秒温度数值增加一度,当满足用户温度设置最低值时再按一下第一个按键完成最低温度的设置,依次类推通过第二个按键完成最高温度的设置。然后温度检测系统根据用户设定的温度范围完成一定范围的温度控制。1.2 本文研究内容本文研究一种在线无损油温检测装置,应用于照明配电变压器上,其特征在于,包括:温度探头,包括磁性外壳及其内封装温度传感器,用于采集所述变压器的外部温度;温度补偿信号处理单元,包括采集单元、温度补偿处理器、通信单元、存储器,所述采集单元将所述温度
7、探头采集温度进行模数转换,并提供给所述温度补偿处理器,所述温度补偿处理器将所述温度转化成对应变压器的油温,通过与所述存储器中温度范围比较,当测得的所述变压器油温超过上下限值,通过所述通信单元报警。本实用新型较传统变压器油温检测开孔改造相比,具有施工简易,无需停电,不影响变压器的性能等优点。硬件电路设计:1. CPU最小系统设计(包括CPU选择,存储器,晶振电路,复位电路)2. 4组开关电路设计以及油温检测电路设计3. 声光报警电路设计4. 软件设计(程序流程图设计和程序编写)第2章 CPU最小系统设计2.1 配电变压器油温在线监测仪设计总体设计方案温度信号经过温度测量模块后,转换为420mA
8、的电流信号,再经V/F 变换器转换为频率信号,由AT89C51 分析频率信号,得到当前的温度值,并且形成显示码送给LED 显示模块,同时校验判据,形成控制信号送控制模块。功能按键有以下五项功能:启动风机、停止风机、显示当前定值、恢复运行以及选择定值。当上位机提出通信请求时,AT89C51 可以向上位机发送有关信息。图2.1 过程层原理框图表1.1 变电站情况项目名称本期规模变压器2台35kV进线2回10kV出线6回10kV电容器组2台电气主接线35kV外桥接线10kV单母分段接线2.2 CPU的选择采用MCS-51单片机,应首先了解MCS-51的引脚,熟悉并牢记各引脚的功能, MCS-51系列
9、中各种型号芯片的引脚是互相兼容的。单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口、中断系统和定时器/计时器等功能的结合在一起的微型计算机。制作工艺为HMOS的MCS-51的单片机都采用40只引脚的双列直插封装方式,如图2.2所示。 图2.2 AT89C51芯片管脚图40只引脚按其功能来分,可分为如下3类: 电源及时钟引脚:Vcc、Vss、XTAL1、XTAL2。电源引脚接入单片机的工作电源。Vcc接+5V电源,Vss接地。时钟引脚XTAL1、XTAL2外接晶体与片内的反相放大器构成了1个晶体振荡器,它为
10、单片机提供了时钟控制信号。2个时钟引脚也可外接独立的晶体振荡器。XTAL1接外部的一个引脚。该引脚内部是一个反相放大器的输入端。这个反相放大器构成了片内振荡器。如果采用外接晶体振荡器时,此引脚接地。XTAL2接外部晶体的另一端,在该引脚内部接至内部反相放大器的输出端。若采用外部时钟振荡器,该引脚接受时钟振荡器的信号,即把此信号直接接到内部时钟发生器的输入端。 控制引脚:、ALE、RESET(RST)。此类引脚提供控制信号,有的还具有复用功能。 RST/VPD引脚:RESET(RST)是复位信号输入端,高电平有效。当单片机运行时,在此引脚加上持续时间大于2个机器周期(24个振荡周期)的高电平时,
11、就可以完成复位操作。在单片机工作时,此引脚应为0.5V低电平。VPD为本引脚的第二功能,即备用电源的输入。当主电源发生故障,降低到某一规定值的低电平时,将+5V电源自动接入RST端,为内部RAM提供备用电源,以保证片内RAM的信息不丢失,从而使单片机在复位后能正常进行。 ALE/ 引脚:ALE引脚输出为地址锁存允许信号,当单片机上电正常工作后ALE引脚不断输出正脉冲信号。当单片机访问外部存储器时,ALE输出信号的负跳沿用于单片机发出的低8位地址经外部锁存器锁存的锁存控制信号。即使不访问外部锁存器,ALE端仍有正脉冲信号输出,此频率为时钟振荡器频率的1/6。 为该引脚的第二功能。在对片内EPRO
12、M型单片机编程写入时,此引脚作为编程脉冲输入端。 引脚:程序存储器允许输出控制端。在单片机访问外部程序存储器时,此引脚输出脉冲负跳沿作为读外部程序存储器的选通信号。此引脚接外部程序存储器的OE(输出允许端)。 /VPP引脚:功能为片内程序存储器选择控制端。当引脚为高电平时,单片机访问片内程序存储器,但在PC值超过0FFFH时,即超出片内程序存储器的4KB地址范围时将自动转向执行外部程序存储器内的程序。当引脚为低时,单片机只访问外部程序存储器,不论是否有内部程序存储器。 I/O口引脚:P0、P1、P2、P3,为四个8位I/O口的外部引脚。P0口、P1口、P2口、P3口是3个8位准双向的I/O口,
13、各口线在片内均有固定的上拉电阻。当这3个准双向I/O口作输入口使用时,要向该口先写1,另外准双向口I/O口无高阻的“浮空”状态。由于单片机具有体积小、质量轻、价格便宜、耗电少等突出特点,所以本系统采用89C51单片机,硬件设计电路图如图所示。89C51内部有4KB的EPROM,128字节的RAM,所以一般都要根据所需存储容量的大小来扩展ROM和RAM。本电路接高电平,没有扩展片外ROM和RAM。2.3 数据存储器扩展RAM是用来存放各种数据的,MCS-51系列8位单片机内部有128BRAM存储器,CPU对内部RAM具有丰富的操作指令。但是,当单片机用于实时数据采集或处理大批量数据时,仅靠片内提
14、供的RAM是远远不够的。此时,我们可以利用单片机的扩展功能,扩展外部数据存储器。常用的外部数据存储器有静态RAM(Static Random Access Memory)和动态RAM(Dynamic Random Access Memory)两种。前者读/写速度高,一般都是8位宽度,易于扩展,且大多数与相同容量的EPROM引脚兼容,有利于印刷板电路设计,使用方便;缺点是集成度低,成本高,功耗大。后者集成度高,成本低,功耗相对较低;缺点是需要增加一个刷新电路,附加另外的成本。当用8282作为地址锁存器时,它的STB可直接与单片机的锁存控制信号端ALE相连,在ALE下降沿进行地址锁存。AT89C5
15、1单片机和静态数据存储器RAM 6116的接口电路图如下图2.3所示:MCS-51单片机扩展片外数据存储器的地址线也是由P0口和P2口提供的,因此最大寻址范围为64KB(0000HFFFFH)。图2.3 CPU与数据存储器的硬件原理图2.4 复位电路设计复位操作可以使单片机初始化,也可以使死机状态下的单片机重新启动,因此非常重要。单片机的复位都是靠外部复位电路来实现得,在时钟电路工作后,只要在单片机得RESET引脚上出现24个时钟脉冲(两个机器周期)以上的高电平,单片机就能实现复位。为了保证系统可复位,在设计复位电路时,一般使RESET引脚保持100ms以上的高电平,单片机便可以可靠地复位。当
16、RESET从高电平变为低电平以后,单片机从0000H地址开始执行程序。在复位有效期间,ALE和PSEN引脚输出高点平。该设计采用的是按健电平复位电路,使用比较方便,在此复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器错误复位。在RESET复位引脚上接一个去耦电容。在程序跑飞时,可以手动复位,按下按键后,使RESET端产生高电平,按键时间决定复位时间,这样就不用在重起单片机电源,就可以实现复位。按键电平复位电路图如下图2.4所示:图2.4复位电路2.5 时钟电路设计时钟电路用于产生单片机工作所需的时间信号。时钟信号可以有两种方式产生:内部时钟方式和外部
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 配电 变压器 在线 监测 设计
