人教版九年级数学上册第二十二章一元二次方程同步练习题【每课时2套-共6套】.doc
《人教版九年级数学上册第二十二章一元二次方程同步练习题【每课时2套-共6套】.doc》由会员分享,可在线阅读,更多相关《人教版九年级数学上册第二十二章一元二次方程同步练习题【每课时2套-共6套】.doc(17页珍藏版)》请在沃文网上搜索。
1、人教版九年级数学上册第二十二章一元二次方程同步练习题22.1一元二次方程同步练习1第1课时1.填空: (1)把5x2-1=4x化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (2)把4x2=81化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 (3)把x(x+2)=15化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 .2.填空: (1)一个一元二次方程,它的二
2、次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是 ; (2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是 ; (3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是 (4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 第2课时1.填空: (1)只含有 个未知数,并且未知数的最高次数是 的方程,叫做一元二次方程; (2)ax2+bx+c=0(a0)这种形式叫做一元二次方程的 形式,其中 是二次项系数, 是一次项系数, 是常数项.2.填空: (1)把(x+3)(x
3、-4)=0化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 ; (2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是 ,其中二次项系数是 ,一次项系数是 ,常数项是 3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 . 开平方,得 , x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 . 开平方,得 , x1= ,x2= .22.1一元二次方程 同步练习
4、2 一、判断题(下列方程中,是一元二次方程的在括号内划“”,不是一元二次方程的,在括号内划“”)15x2+1=0 ( )23x2+1=0 ( )34x2=ax(其中a为常数) ( )42x2+3x=0 ( )5 =2x ( )6 =2x ( )7x2+2x=4 ( )二、填空题1一元二次方程的一般形式是_。2将方程5x2+1=6x化为一般形式为_3将方程(x+1)2=2x化成一般形式为_。4方程2x2=8化成一般形式后,一次项系数为_,常数项为_5方程5(x2x+1)=3x+2的一般形式是_,其二次项是_,一次项是_,常数项是_6若ab0,则x2+x=0的常数项是_7如果方程ax2+5=(x+
5、2)(x1)是关于x的一元二次方程,则a_8关于x的方程(m4)x2+(m+4)x+2m+3=0,当m_时,是一元二次方程,当m_时,是一元一次方程三、选择题1下列方程中,不是一元二次方程的是_ A2x2+7=0 B2x2+2x+1=0C5x2+4=0D3x2+(1+x) +1=02方程x22(3x2)+(x+1)=0的一般形式是_ Ax25x+5=0 Bx2+5x+5=0Cx2+5x5=0 Dx2+5=03一元二次方程7x22x=0的二次项、一次项、常数项依次是_ A7x2,2x,0 B7x2,2x,无常数项C7x2,0,2x D7x2,2x,04方程x2=()x化为一般形式,它的各项系数之
6、和可能是_ A B C D5若关于x的方程(ax+b)(dcx)=m(ac0)的二次项系数是ac,则常数项为_ Am Bbd Cbdm D(bdm)6若关于x的方程a(x1)2=2x22是一元二次方程,则a的值是_ A2 B2 C0 D不等于27若x=1是方程ax2+bx+c=0的解,则_ Aa+b+c=1 Bab+c=0Ca+b+c=0 Dabc=08关于x2=2的说法,正确的是_ A由于x20,故x2不可能等于2,因此这不是一个方程Bx2=2是一个方程,但它没有一次项,因此不是一元二次方程Cx2=2是一个一元二次方程Dx2=2是一个一元二次方程,但不能解四、解答题现有长40米,宽30米场地
7、,欲在中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为32,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来。参考答案一、1 2 3 4 5 6 7二、1ax2+bx+c=0(a0)25x2+6x1=03x2+1=0 40 855x22x+3=0 5x2 2x 360 7184 =4三、1C 2A 3D 4D 5D 6A 7C 8C四、设计方案:即求出满足条件的便道及休息区的宽度若设便道及休息区宽度为x米,则游泳池面积为(402x)(302x)米2,便道及休息区面积为240x+(302x)x米2,依题意,可得方程:(402x)(302x)240x+(302x)x=
8、32由此可求得x的值,即可得游泳池长与宽22.2 降次解一元二次方程同步练习1第1课时1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 . 开平方,得 , x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 . 开平方,得 , x1= ,x2= .2.完成下面的解题过程: 解方程:9x2+6x+1=4;解:原方程化成 . 开平方,得 , x1= ,x2= .3.填空: (1)x2+2x2+ =(x+ )2; (2)x2-2x6+ =(x- )2; (3)x2+10x+ =(x+ )2; (4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程
9、:x2-8x+1=0;解:移项,得 . 配方,得 , . 开平方,得 , x1= ,x2= .5.用配方法解方程:x2+10x+9=0.6.填空: (1)x2-2x3+ =(x- )2; (2)x2+2x4+ =(x+ )2; (3)x2-4x+ =(x- )2; (4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 . 配方,得 . 开平方,得 , x1= ,x2= .8.用配方法解方程:x2-6x+7=0.第2课时1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 . 配方,得 , . 开平方,得 , x1= ,
10、x2= .2.填空: (1)x2-2x+ =(x- )2; (2)x2+5x+ =(x+ )2; (3)x2-x+ =(x- )2; (4)x2+x+ =(x+ )2.3.完成下面的解题过程: 用配方法解方程:x2-x-=0.解:移项,得 .配方 , . 开平方,得 K x1= ,x2= .4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0. 解:移项,得 . 二次项系数化为1,得 . 配方 , . 开平方,得 , x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.第3课时1.完成下面的解题过程:用配方法解方程:3x2+6x4=0. 解:移项,得 . 二次项系数化为1,得
11、 . 配方 , . 开平方,得 , x1= ,x2= .2.完成下面的解题过程: 用配方法解方程:(2x-1)2=4x+9. 解:整理,得 .移项,得 . 二次项系数化为1,得 . 配方 , . 开平方,得 , x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.第4课时1.完成下面的解题过程: 用公式法解下列方程:(1)2x2-3x-2=0.解:a= ,b= ,c= . b2-4ac= = 0. , ,.(2)x(2x-)=x-3.解:整理,得 .a= ,b= ,c= . b2-4ac= = . , .(3)(x-2)2=x-3.解:整理,得 .a= ,b= ,c= .
12、b2-4ac= = 0. 方程 实数根.2.利用判别式判断下列方程的根的情况: (1)x2-5x=-7; (2)(x-1)(2x+3)=x; (3)x2+5=2x第5课时1.完成下面的解题过程: 用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得 .a= ,b= ,c= . b2-4ac= = 0. , ,.2.完成下面的解题过程: 用因式分解法解方程:x2=2x.解:移项,得 .因式分解,得 .于是得 或 , x1= ,x2= .3.用因式分解法解下列方程: (1)x2+x=0; (2)4x2-121=0; (3)3x(2x+1)=4x+2; (4)(x-4)2=(5-2x)
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
20 积分
下载 | 加入VIP,下载更划算! |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 每课时2套-共6套 人教版 九年级 数学 上册 第二十二 一元 二次方程 同步 练习题 课时